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ABSTRACT 
 
The rapid pace of change in the electronics industry and the significant reduction 

in military budgets over the past decade has forced many military aircraft to extend their 

service lifetimes. This has led to aircraft with outdated avionics systems being required to 

accomplish new and more complex missions. This thesis examines the process of 

reengineering an outdated avionics system to economically upgrade its capabilities 

through the FPGA implementation of a binary compatible replacement. The system 

targeted is the AN/AYK-14(V) Navy Standard Airborne Computer, specifically the XN-8 

chassis used as the mission computer onboard the F/A-18 C/D aircraft. This thesis is also 

intended to provide a resource document on the AYK-14 for a study being conducted by 

the Naval Air Systems Command (NAVAIR) Advanced Weapons Laboratory (AWL). 

The design of the Input / Output module of the VHSIC Processor Module was recovered 

through research of documentation and hardware testing. The recovered design was 

modeled using VHDL, synthesized and implemented using computer-aided design 

(CAD) tools. This thesis shows that replacement of legacy systems through use of FPGA 

technology is a viable option, however, expansion of the design is recommended to create 

a truly binary compatible replacement.  
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I. INTRODUCTION  

A. THE LEGACY AVIONICS ISSUE 

The 1990’s was a decade that ushered in many dramatic changes in the world. 

These changes had a profound effect on the U.S. government and the armed forces in 

particular. The two events that had the greatest effect on the military were the fall of 

communism and the technological revolution in the electronics industry.  

The end of the Cold War left the military without a formidable adversary. This, in 

turn, led to budgetary changes that affected all branches of the military. More 

specifically, the funding for the acquisition of new military aircraft was greatly reduced. 

This occurred in parallel with a similar reduction in the budgets for modernization of 

existing, or ‘legacy’1, aircraft.  In order to deal with the shrinking budget, the operational 

lifetimes of many of these legacy aircraft were extended beyond their original service 

lifetimes. This has led to the average age of a U.S. Military aircraft being 20 years and 

continuing to increase.[Ref. 2:p. 1]   

This increase in average age has reduced the effectiveness and readiness of the 

armed forces as a whole. According to the ‘Committee on Aging Avionics in Military 

Aircraft’, the U.S. Air Force reported a 10 percent decrease in readiness during the 

1990’s. The committee attributed this decline to the increasing age of the aircraft, 

“particularly the aging avionics systems on which they depend.” [Ref. 2:p. 1] The 

shrinking budgets for upgrades to these avionics mean that the decline in readiness will 

most likely continue unless lower cost solutions can be found.  

The technological revolution that has occurred during the 1980’s and 1990’s has 

brought with it great advances in electronics and computing. However, the economic 

impetus behind these advances has increasingly come from the commercial sector. As 

Reference 2 states “whereas the military once provided a large and profitable market for 

the electronics industry, the military electronics market today constitutes less than 1 

percent of the commercial market.” This means that the needs and requirements of the 

                                                 
1 The definition of legacy for this thesis will be as defined in [Ref. 1:p. 1] as any system that has been 

“designed, developed, and fielded.” 
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military have had diminishing influence on the products that industry designs and 

produces.  

The previously discussed budget shortfalls along with the reduction of influence 

in the commercial electronics sector have caused military avionics systems in general to 

fall further behind current technology.  As these legacy avionics systems get older, the 

costs for modernization along with the costs to support the current systems continue to 

increase. Therefore, the need is clear for a way to modernize these aging systems that will 

lower these costs in the future. 

 

B. POTENTIAL SOLUTIONS TO THE LEGACY PROBLEM 

The solution to a problem as complex as the legacy avionics issue is not clear. 

The overall solution will lie in changes to design methods and acquisition policies that 

will continue to look for the benefits promised by COTS integration. Most importantly, 

the solution must also address the additional unforeseen problems that this integration has 

brought with it in a more far-reaching way.  

This solution to the legacy avionics problem as a whole is too complex to be 

covered in one thesis.  This thesis therefore will narrow the subject to address the area of 

microprocessors and their associated communication interfaces. This area can be 

considered of central importance to the problem as a whole. This is because 

microprocessors are so central to the performance of any avionics systems that any 

increase in performance of the processor will in turn almost guarantee an increase in 

performance of the entire system.   

In his master’s thesis, CDR Mike Croskrey [Ref. 1], investigates the possible 

solutions for the legacy avionics problem as they apply to microprocessors. He suggests 

several solutions to the problem and compares and contrasts the benefits and drawbacks 

of each. These solutions and their advantages are summarized in Table 1. 
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Proposed Solution Advantages

Upgrade to a COTS binary compatible
microprocessor, when available.

! Maintains old code and allows incremental
updates using the new processor

! Assures functionality of existing code

Maintain old processor or capability of
executing the old code with hardware
1) Keep old processor board and add a COTS
processor board
2) Develop a dual instruction set processor
3) Port the old processor to an ASIC
4) Port old processor to an FPGA

! Maintains old code and allows incremental
updates using the new processor

! Assures functionality of existing code
! ASICs are fast and have low power

requirements
! FPGA relatively easy to modify if

problems found

Maintain the capability of executing the old
code using a software emulator

! Assures functionality of existing code

Port the old code to a new processor family ! May increase throughput

Translate the code to Higher Order Language
(HOL)

! Improves ability to maintain
knowledgeable workforce

! Object oriented code facilitates reuse

Translate the code to COTS assembly language ! Facilitates use of a more current processor

Table 1.   Solutions to Replacing Legacy Processors [From Ref. 3] 

 

The solution that this thesis will focus on is the design and implementation of new 

hardware that is binary compatible with the existing processor and therefore able to 

execute the existing code.  This hardware solution will also be binary compatible with all 

external interfaces since these components will not be redesigned as part of this thesis. 

 

C. REENGINEERING  

Forward engineering is the process of creating a new system and can be roughly 

broken down into three stages or processes. These stages include requirement 

specification, design, and implementation. The process of designing a system to replace 

an existing legacy system requires additional design steps in order to recover the design 

that is to be replaced. These additional steps can be grouped into a process called reverse 

engineering. Reverse engineering is the process of analyzing a subject that serves to 

identify its components and their interrelationship as well as produce a representation of 
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the system at a higher level of abstraction. Its primary purpose is to “increase the overall 

comprehensibility of the system for maintenance and future development.” [Ref. 6, p16] 

Reverse engineering can include the same steps defined in forward engineering 

but in reverse order. It also includes an additional step, or sub area, termed design 

recovery. Design recovery is a process in which domain knowledge, external information, 

and deduction are combined with observation to identify higher-level abstractions than 

those obtained directly.  It is basically the process that combines all available resources to 

reproduce the information that allows a complete understanding of what the system does 

and how it does it. [Ref. 6] 

In order to design and implement a new system that will replace an existing 

system, both the reverse and forward engineering processes must occur. This overall 

process, of both reverse and forward engineering, is termed reengineering. It can be 

defined as “the examination and alteration of a subject system to reconstitute it in a new 

form and the subsequent implementation of the new form.”  [Ref. 6, p15]  

The concept of rapid prototyping is a process that provides the means to produce 

prototypes of a design early in the design process. These prototypes allow the testing of 

key aspects of the design continuously throughout the design stage so the effects of early 

design decisions can be determined before other design decisions are made.  The benefit 

of these prototypes increases as the complexity of the overall design increases. 

In reengineering, rapid prototyping has an additional benefit that can both speed 

the design process and validate the design. This additional benefit is the ability to test the 

prototype using the environment and tools available to test the original design.  This is 

especially important in complex designs or designs that lack detailed documentation. 

 

D. PURPOSE OF STUDY 

The purpose of this study is to investigate the process of reengineering a legacy 

avionics system, particularly the memory and communication interfaces of an embedded 

microprocessor system. It will include the implementation of the recovered design using 

Field Programmable Gate Array (FPGA) technology. It targets the AN/AYK-14(V) Navy 
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Standard Airborne Computer; specifically the XN-8 chassis used onboard the F-18 C/D 

aircraft. This computer was chosen not only because it is representative of the legacy 

avionics challenge already addressed, but also because the AYK-14 is the focus of an 

analysis of alternatives being conducted by the Naval Air Systems Command (NAVAIR) 

Advanced Weapons Laboratory (AWL).  

The secondary purpose of the design recovery will be to serve as a reference for 

designers and programmers who are continuing work on the AN/AYK-14.  
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II. DESIGN RECOVERY 

A. OVERVIEW OF REENGINEERING PROCESS 

Chapter I defined the terms that describe the process and the steps involved in 

engineering processes, which are illustrated in Figure 1.   

 

DesignRequirements Implementation

Reverse Engineering Reverse Engineering

Forward Engineering Forward Engineering

Design Recovery

Reengineering AYK-14 Reengineering Plan

 

Figure 1.   Engineering Processes 
 

The AYK-14 Reengineering Plan, adapted from Reference 6 and shown in Figure 

1, helps to depict the steps that were followed in this thesis. The key point that is 

illustrated is that the AYK-14 reverse engineering phase only investigated to the level of 

the design. The requirements were not analyzed directly for numerous reasons. First, the 

primary goal of this project was to design a replacement for the AYK-14 processor that 

was binary compatible with the rest of the system, therefore there was little room for 

changes to the overall design that would better meet the requirements. Another reason 

was simply that the time and resources available to continue the design recovery to the 

requirements level were not available. It should be pointed out that the requirements were 

researched at a high level as part of the design recovery to aid in the understanding of the 

design and implementation. 
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B. OVERVIEW OF THE AYK-14  

An understanding of the mission and history of an avionics system is essential to 

the recovery of its design. This section will give a brief introduction to the AYK-14 to 

help define components and their roles. However, it is recommended that the reader refer 

to References 1 and 7 for a more detailed analysis and background on the system. The 

documentation supporting the AYK-14 was produced at varied times in the computer’s 

lifecycle and therefore only considers equipment available at the time it was authored. 

This section is also intended to illustrate all of the major components of the system, even 

if they are outdated, in order to provide a reference when referring to the documentation. 

All of the documentation used in the design recovery is listed in Appendix A. 

1. History of the AYK-14 

Development of the AYK-14 began in 1976 by Control Data Corporation. It was 

designated the Navy Standard Airborne Computer in 1986. Since then, the AYK-14 has 

been used on seven types of Navy and Marine Corps aircraft including the AV-8B, F-

14D, and F/A-18C/D. It consists of a family of modules that fit into a plug-compatible 

backplane. These modules can be broken down into four groups by function and they 

include processor, I/O, memory, and power. As the AYK-14’s requirements have 

changed and technology has improved, the modules in each subsystem have evolved to 

increase overall capability. Therefore, there are numerous versions of the AYK-14 based 

on platform requirements and modules present.  

2. Processor Subsystem 

The processor in the AYK-14 has evolved through three generations of upgrades. 

The first generation is the central processor unit (CPU), which consists of three double-

sided modules: general processor module (GPM), processor support module (PSM), and 

extended arithmetic unit (EAU). The second generation is the single card processor 

(SCP) that combines the three modules of the CPU into one module. The third generation 

processor is the very high-speed integrated circuit (VHSIC) processor module (VPM). An 

attribute of the VPM that is important to highlight is that it is the first processor to have 

onboard memory (1 M-word). The VPM is the processor that will be targeted for design 

recovery in this thesis. 
8 



There are two additional processors that are used solely for I/O functions. The 

first generation is the I/O processor (IOP), superceded by the extended I/O processor 

(EIOP). 

3. Memory Subsystem 

The memory subsystem consists of memory control modules and memory 

modules. The memory control modules provide access of the memory modules to the 

processor over the memory bus (MBUS or CPUBUS). There are three control modules: 

memory control module with memory (MCMM), memory subsystem module (MSSM), 

and the memory control module (MCM). There are four memory modules with four 

different forms of memory: DRAM memory module (DMM), programmable memory 

module, using EEPROM, (PMM), semiconductor memory module, using SRAM, 

(SMM), and core memory module (CMM).  

4. Input / Output Subsystem 

The I/O subsystem consists of a combination of I/O modules dependant upon the 

communication requirements. There are eight types of I/O modules that can be further 

classified as smart or standard. A smart I/O module has the ability to perform additional 

processing normally performed by the processor or I/O processor. This capability will be 

defined in greater detail in section H. The I/O modules interface with external equipment 

via buses or discretes. The I/O modules communicate with the processor via the I/O bus 

(IOBUS or XBUS).  An AYK-14 can contain up to 16 I/O modules, with a maximum of 

five smart modules, depending on the Chassis used. The I/O modules and their 

classifications are listed in Figure 2. 

5. Power Subsystem  

The power subsystem is a single module that provides regulated power to all other 

systems. There are four types of module dependant upon the power requirements of the 

system. They are the power converter module PCM –1, PCM-2, PCM-3, and PCM-60.   

6. Chassis Subsystem 

The chassis subsystem is the housing used to contain all of the modules. There are 

nine standard chassis types to meet the size and connection requirements of the different 
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AYK-14 roles. The chassis contains a backplane into which each module is plugged to 

provide communication.  

      Chassis Subsystem
! Type 1
! Type 2
! Type 3
! Type 4
! Type 5
! Type 6
! Type 7
! Type 8
! Type L
! FTAS

Processor
Subsystem

Processors

! VPM
! -25A
! -25B

! SCP
! CPU (3 Cards)

! GPM
! PSM
! EAU

I/O Processors

! EIOP
! IOP

Memory
Subsystem

Memory Control Modules

! MCMM
! MSSM
! MCM

Memory Modules / Type of
Memory

! DMM
! Dynamic RAM

! PMM
! EEPROM

! SMM
! Static RAM

! CMM
! Core Memory

I/O
Subsystem

Memory Modules / Bus format

Smart modules

! DSM
! MIL-STD-1553A/B

! NDM-B
! NTDS

! NDM-C
! NTDS

Standard Modules

! SIM-A
! MIL-STD-1553A

! SIM-B
! MIL-STD-1553B

! NIM-A
! NTDS

! NIM-B
! NTDS

! NIM_C1
! NTDS

! NIM-S
! NTDS

! PIM
! MIL-A-85232

! RIM
! EIA-STD-RS-232-C

! SMIOM
! UNIVAC 1832

! PPSM
! DIOM
! DIM

Power Subsystem

! PCM-1
! PCM-2
! PCM-3
! PCM-60

MBUS (CPUBUS)

XBUS (IOBUS)

Figure 2.   AYK-14 Subsystems 
 

C. AYK-14 CONFIGURATION ON THE F-18C/D 

The current AYK-14 configuration that is used on the F-18C/D is the CP-2360. It 

contains two VPMs (one 25B - Master, one 25A - Slave), six DSMs, one DIM, and one 

PCM-1 as shown in Figure 3. This is the configuration that was targeted for this thesis. 

10 



More specifically, the VPM processor as used in this configuration was the target of the 

reengineering process.  

PCM-1
Power Supply

DIM
I/O Module

DSM
I/O Module

VPM-25B
Master Processor

VPM-25A
Slave Processor

DSM
I/O Module

DSM
I/O Module

DSM
I/O Module

DSM
I/O Module

DSM
I/O Module

Figure 3.   AYK-14 Chassis 8 – CP2360 
 

 The avionics system uses two CP2360’s as Mission Computers, designated MC1 

and MC2. MC1 processes all navigation and monitoring tasks and MC2 processes all 

sensor and weapons control tasks. The Mission Computers communicate with the other 

systems over six 1553 data-bus channels, as illustrated in Figure 4.Earlier F/A-18 aircraft 

use a chassis with only five 1553 data-bus channels. 

11 



Figure 4.   Six 1553 Data Bus Channels on F/A-18 C/D 
 

D. VPM PROCESSOR 

The VPM is a 16-bit Complex Instruction Set Computer (CISC) type processor 

with over 1 Million words of on-board memory. It is a 2-sided module that is organized 

into 3 major sections. These sections are the Instruction Execution Processor (IEP), 

Cache/Instruction Fetch (C/IF), and Adapter and are shown in Figure 5. The VPMs 

primary interfaces include the Input / Output Bus (XBUS or IOBUS), the memory bus 
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(MBUS), and the Event and Event Monitor busses (EBUS and EMON) along with 

multiple discretes.  The A-side contains the 24 memory chips, the Adapter array, the 

MBUS and XBUS data and control signal buffers, and the external discrete receivers. 

The B-side contains four arrays, including the IEP and C/IF, 34 memory chips, and Event 

drivers and receivers.   

B SIDE

A SIDE

ON BOARD MEMORY
1024K x 16

Error Correction Code
1024K x 8

BOOTSTRAP
MEMORY

32K x 8
ADAPTER

MBUS

XBUS

INSTRUCTION
EXECUTION
PROCESSOR

2 Chips

ALU /
 Microsequencer

CACHE/
INSTRUCTION

FETCH

2 Chips

Control Address /
Data Path

MBUS(00:23)

XBUS(00:23)
ADDRESS (04:20)

DATA (00:23)

EVENT BUS

CACHE
MEMORY

32K x 16

MICROMEMORY
RAM

8K x 64

MICROMEMORY
EEPROM
256K x 8

EVENT MONITOR BUS

FUNCTION
INTERFACE

ADDRESS
INTERFACE

EBUS(00:07)

EMONBUS(00:07)

TRACE
FILE

8K x 23

IEP FILE
8K x 16

ELMR FILE
8K x 16

ERROR LOG
8K x 8

 
Figure 5.   VPM Block Diagram 

 

The IEP section is comprised of the microsequencer chip, the arithmetic chip, and 

the micromemory. It is implemented using a microprogrammed processor that executes 

microcode programs. Microcode programs control elementary parts of the processor and 

define the software instruction set used for the AYK computer. Every software command 

executable by the VPM is interpreted in the IEP by a series of microcommands. These 

commands, or microcode, are stored in EEPROM and downloaded to SRAM at start-up. 

The microcode stored in these memories is called firmware. Some other functions of 
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firmware include running BITs, servicing Events, and I/O operations.  The IEP design 

was recovered and implemented by CDR M. Croskrey in his master’s thesis and his 

design serves as the instruction processor for the design developed here. For additional 

details concerning the IEP design recovery, refer to Reference 1. 

The C/IF section is comprised of the cache control and address chip, the cache 

memory, the data path chip, and the trace file. It provides the on-chip cache for the IEP 

and manages requests for memory to the adapter. The use of an on chip cache has been 

shown to significantly increase throughput and overall performance of most processors, 

however, the design recovery and implementation of this section is left to future students 

continuing work on this project due to time constraints.   

E. ADAPTER 

The primary function of the adapter is to control the onboard memory interface 

and the XBUS and MBUS interfaces. It handles all requests for memory from either the 

data path array, other VPMs via the MBUS, or I/O modules via the XBUS.  It interfaces 

with the event system and contains two sets of page registers used for I/O memory 

references. 

The VPM is capable of operating in two memory modes dependant upon the other 

modules present.  These modes are standalone and non-standalone.  In standalone mode, 

the VPM performs the role of Memory Controller and arbitrates memory requests and M 

and X bus usage. In non-standalone mode, a memory controller, such as the MCMM, is 

required to manage the memory. Both VPMs in the CP-2360 operate in the standalone 

mode. 

The VPM is a 16-bit processor and the IEP and C/IF use 16 bits addresses for 

memory. The VPM has a memory reach of 8 million locations, which requires 23 bits for 

addressing. In order to reach this amount of memory, the VPM uses memory paging. The 

VPM uses banks of 64 16-bit wide Page Registers. The upper 6 bits of the 16-bit 

Software Address points to one of the 64 page registers. The contents of this register are 

used to create the complete 23-bit address, with 3 bits being used for memory protection. 

This 23-bit address is considered the absolute memory address and can address any 

location in the VPM memory range. The absolute address generation is depicted in Figure 
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6 for clarity. The control address array contains four sets of 64 page address registers 

used for generating the absolute address for on-board memory references.  

Page Register Number Address Within Page

Page Address

9   8   7   6   5   4   3   2   1  015 14 13 12 11 10

11 10 9  8  7  6  5  4  3  2  1  015 1314 12

9  8  7  6  5  4  3  2  1  022 21 20 19 18 17 16 15 14 13 12 11 10

Software Address (16 bits)

Page Register Contents (16 Bits)

Absolute Address (23 Bits)

Execute Protect

Write Protect

Read Protect

Page Register 0
Page Register 1
          “
          “
          “
Page Register 63

Page Register Set

Figure 6.   Address Generation    
 

The VPM on board memory (OBM) consists of 1024K locations of 24 bit words. 

Each word contains 16 bits of data and 8 bits of error correction code. The memory is 

broken down into 256K of SRAM and 768K of EEPROM.  The bootstrap memory 

consists of 32K addresses of 8-bit data organized as 16K of 16-bit word storage on a 

EEPROM. The lower 8K is loaded with bootloader programs for use on start-up or after a 

reset. The memory address range of the OBM is dependant upon the VPM’s location and 

role within the Chassis. The memory map of the entire address range is shown in Figure 

7. 
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PAGES     0 - 3F                  400-6FF               800 - AFF            C00 - EFF                1000 - 12FF

    700-7FF               B00 - BFF            F00 - FFF      1300 - 13FF

0 64K        1M     2M               3M           4M                               5M

      Master VPM

EEPROM   100000
      1BFFFF

RAM       1C0000
      1FFFFF

    SLAVE VPM #1

EEPROM   200000
      2BFFFF

RAM       2C0000
      2FFFFF

    SLAVE VPM #2

EEPROM   300000
      3BFFFF

RAM       3C0000
      3FFFFF

    SLAVE VPM #3

EEPROM   400000
      4BFFFF

RAM       4C0000
      4FFFFF

MEM MOD or VPM-B

000000
00FFFF

Figure 7.   Absolute Address Assignment 
 
 

F. EXTERNAL BUS OPERATION 

The MBUS and XBUS (or IOBUS) are independent, 24-bit bi-directional busses 

that provide communication between the modules of the AYK-14. The MBUS is used to 

provide memory access to every VPM’s OBM and with memory modules. The XBUS is 

used for communications with I/O modules and for inter-processor communications 

(IPC).  

The process of allowing modules to gain control of bus and transfer data on that 

bus is called bus arbitration. In standalone memory mode, the adapter of the Master VPM 

acts as the arbitrator for both busses. There are five primary control signals that are used 

for bus arbitration and control for each bus. These signals are DESIRE and GRANT for 

arbitration, and REQUEST, ACKNOWLEDGE, and RESUME for control.  

Bus operations are initiated by the user and consist of two parallel word transfers. 

The first word is a 24-bit control word and is transferred from the VPM or smart I/O 

module to address a particular module and provide control information. The second word 

is a 16-bit data word that transfers data or status as input or output as determined by the 

function word.  

1. Standalone Mode MBUS Operation 

The VPM standalone mode of operation uses the memory control logic of the 

VPM that eliminates the need for a separate memory control module. Each VPM has 

access to the OBM of any other VPM, as well as memory modules if used. The MBUS 

functions as a 23-bit physical (post-paged) address memory bus, with the OBM address 
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allocation as shown in Figure 7. Each VPM performs its own paging and all I/O memory 

references use page set 0 on the master VPM. There is no interprocessor communication 

of page register or page state changes. Therefore, the paging and protection contained in 

each VPM is applicable only to that VPM. A single memory bus is used to prevent the 

interleaving of off-board memory references. 

In standalone mode, the MBUS arbitration logic supports two external 

desire/grant signal pairs plus the processor’s own desire/grant pair for a total of three 

users. Additional users can be added by daisy chaining the desire/grant signals. The 

version of the AYK-14 used in this thesis only has two MBUS users so the details of 

daisy chaining will not be covered here.  

A user requests use of the bus by activating its DESIRE signal (active low). The 

desire signals of both external users are resynchronized before being used in the 

arbitration logic. The internal desire signal is captured in a flip-flop before it enters the 

arbitration logic. The synchronous desire signals are fed into the prioritization logic to 

determine which user is granted control of the bus. The algorithm makes use of a last user 

register that keeps track of which user was granted control of the bus last. The result is a 

rotating priority scheme based on which user had the bus last. The module that last used 

the bus drops to the lowest priority and the one following it gets the highest priority. 

The arbitration algorithm outputs the next-user, which is fed into a latch that 

opens during the last half of the clock cycle.  When enabled, the latch captures the next-

user, which causes the appropriate GRANT signal to be enabled. The asynchronous and 

synchronous (post flip-flop) desire signals must both be active as a condition for 

activating a grant signal. This is to ensure that the grant is not activated before the desire 

signals are synchronized.  

In addition to the five hand-shaking control signals, the VPM utilizes 10 

additional signals for MBUS error detection and control. The signals are listed in Figure 

8 and they include four parity bits, four control signals, a busy signal and an error signal. 

The first two control signals, MSB_WRITE and LSB_WRITE, indicate the type of 

memory operation, read or write. The other two control signals exist for future capability. 

The busy signal, M_BUSY, is used to indicate when the VPM is driving data on the bus. 
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The parity bits are used for error detection, with three used for the 24 address lines, for 

both the address and the data words, and one for the four command signals. The error 

control signal is used to indicate when a parity error is detected.  The additional control 

signals are needed because all of the 24 bits are used for the address in the command 

word when operating in the standalone mode. 

M_BUS:00-23

M_Bus Control Bits

M_GRANT_OUT:00-01

M_DESIRE_IN_L:00-01

M_DESIRE_OUT_L

M_GRANT_IN_L

M_Bus Arbitration Bits

LSB_PARITY (for Bits 0-7)

MSB_PARITY (for Bits 8-15)

ADRS_PARITY (for Bits 16-23)

CMD_PARITY (for Command signals)

M_Bus Parity Bits

MSB_WRITE_L
LSB_WRITE_L
32_BIT_DATA

IPL_WRITE

VPM

M_REQUEST_L

M_ACKNOWLEDGE_L

M_BUSY_L

M_RESUME_L

BUS_ERROR_L

S_BUSY_L

Figure 8.   MBUS Interface Signals 
 

After receiving control of the MBUS via a Grant signal, communication on the 

MBUS is initiated by the VPM activating a Request signal along with the 23-bit absolute 

memory address. The VPM also drives the four parity bits and the four additional control 

signals.  The VPM who’s OBM is in the range of the address checks the parity of the 

address and the command signals. If there is an error, it activates the Error signal and 

stops responding to the memory request. If the parity check is successful, the responding 

VPM activates the Acknowledge signal and clocks-in the address. The initiating VPM 

activates its MBUSY signal to indicate that it is ready to either read or write data on the 
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MBUS. It will also deactivate the desire signal to the arbitration logic to allow the next 

user to be determined. 

DATA

(DESIRE)

GRANT

(REQUEST)

(ACKNOWLEDGE
/S_BUSY)

(RESUME)

Output Operation

CONTROL DATA

(DESIRE)

GRANT

(REQUEST)

(ACKNOWLEDGE
/SBUSY)

(RESUME)

20 ns min

CONTROL

0 ns min

0 ns min

(M_BUSY_

45 ns MAX20 ns Min

125 ns Min

0 ns Min

0 ns Min

0 ns Min

0 ns Min

0 ns Min

0 ns Min

0 ns Min

(MBUSY)

0 ns min

0 ns min

0 ns min

Input Operation

Figure 9.   MBUS Standalone Operations 
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 If the control signals indicated a read command, the initiating VPM will 

deactivate the Request signal and the responding VPM will drive the requested data on 

the MBUS along with the corresponding parity bits. When this data is valid, the 

responding VPM activates the Resume signal to indicate that the data is valid. The 

initiating VPM will clock-in the data and deactivate its MBUSY signal to indicate that 

the data has been read. The responding VPM will then stop driving the MBUS and 

deactivate the Resume signal to terminate the operation.  

If the control signals indicated a write command, the initiating VPM will drive the 

requested data on the MBUS along with the corresponding parity bits and then deactivate 

the Request signal. When the responding VPM sees the deactivation of the Request 

signal, it clocks-in the data and activates the Resume signal. In response to the Resume 

signal, the initiating VPM removes data from the MBUS and stops driving the four 

control signals and the MBUSY signal. The input and output operations are illustrated in 

Figure 9.  

2. Standalone XBUS Operation 

The XBUS is the primary communication path between the processor and the I/O 

subsystems. All I/O control, instructions, and data transfer operations utilize this bus. For 

‘smart’ I/O modules, the XBUS provides a means for direct access to OBM. The XBUS 

also provides an asynchronous channel for interprocessor communications. The XBUS 

interface signals are illustrated in Figure 10. 

In standalone mode, the XBUS arbitration logic supports six external desire/grant 

signal pairs plus the processor’s own internal desire signals for a total of seven users. 

Additional users can be supported through daisy chaining of desire and grant signals. The 

Adapter on the master VPM monitors the external desire signals along with its own 

internal desire signal. The adapter arbitration logic determines the next user through a 

rotating equal priority process implemented in the same fashion as the MBUS arbitration 

previously discussed.   
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IPC_MODE_L

X_BUS:00-15

X_REQUEST_L

X_ACKNOWLEDGE_L

X_RESUME_L

X_GRANT_IN

O_X_GRANT_IN

X_DESIRE_OUT_LX_BUS:16-23

Used when Slave VPM

VPM

X_GRANT_OUT:00-05

X_DESIRE_IN:00-05

M_Bus Arbitration Bits

Figure 10.   XBUS Interface Signals 
 

The first step in XBUS communication is the Desire signal. Any module 

requesting use of the bus will activate its desire signal and wait for a response from the 

adapter. Once the adapter has determined the next user through the arbitration logic, it 

activates the Grant signal to that module. The owner of the bus then activates the Request 

signal while simultaneously driving the 24-bit control word onto the bus. The upper 8 bits 

of the control word, or XBUS Command Field, contain control information regarding the 

type of operation requested and the intended recipient. The lower 16-bits contain either a 

control word, an address, or data depending on the type of operation requested. Figure 11 

illustrates the breakdown of the Command word and summarizes the meanings of the 

fields. 
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Memory Operation

S MO CH # / CMD

16 1817 19 2120 22 23

Output Operation

Channel Number or
Additional Command

Status Operation

Status Bit :
S : = 1 Operation is a Status (input) or Function (output) operation

= 0 Operation is a Data transaction
Output Bit :
O : = 1 Transferring data FROM the initiating module TO the responding

module (OUTPUT)
= 0 Transferring data TO the initiating module FROM the responding

module (INPUT)
Memory Bit :
M: = 1 Operation is a memory type (memory read/write or memory

status/function)
CH# / CMD Bits are additional Command information

= 0 Operation is an I/O operation
CH# / CMD Bits are a Channel Number

CH# Definition

00 - 0F I/O Module Channel Numbers
10 - 16 Processor Channel Numbers
17 Broadcast to all Modules
1C Broadcast to all IPC Modules
1D Broadcast to all Smart I/O Modules
1E Adapter Channel Number
1F Broadcast to all I/O Modules

CTRL / ADDR / DATA

11109876543210 15141312

Control or Address Out
or

Data Out or In

XBUS 24-Bit Command Word

Figure 11.   XBUS Command Word Format 

After the module that was addressed decodes the control word, it activates the 

Acknowledge signal in response. If the operation commanded is an output, the module 

that issued the control word drives 16 bits of data onto the bus. The receiving module 

clocks-in the data and activates the Resume signal to indicate receipt. If the operation is 

an input, the commanded module activates the Resume signal, to indicate that it is now 

driving the bus, followed by driving the 16 bits of data onto the bus. The data will remain 

active for the duration of the Resume signal. Upon deactivation of the Resume signal, the 

arbitration logic will update the priority list and begin the process again. For I/O module 

broadcast operations, the Master VPM always generates the bus Acknowledge and 

Resume signals regardless of initiating module. For processor module broadcast 
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operations, the initiating module generates the bus Acknowledge and Resume signals. 

These steps are illustrated in Figure 12 for both input and output operations. 

DATA

(DESIRE)

GRANT

(REQUEST)

(ACKNOWLEDGE)

(RESUME)

Output Operation

CONTROL DATA

(DESIRE)

GRANT

(REQUEST)

(ACKNOWLEDGE)

(RESUME)

Input Operation

0 ns min

20 ns min 0 ns min

0 ns min

50 ns max

0 ns min

0 ns min

45 ns max

CONTROL

0 ns min

0 ns min

20 ns max

100 ns max

Figure 12.   XBUS Timing Diagrams 
 

When the XBUS is used for interprocessor communications, only bits 16-23 of 

the 24-bit bus are used for command and control along with the control and hand shaking 

signals. These 8 bits are referred to as the IPC BUS. Interprocessor communications 

consist of input and output transactions between VPMs and can be either from one VPM 

to another or broadcast to all VPMs in the system. The additional control signal used is 
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the IPC MODE signal and is connected to all VPMs. When activated, it causes all other 

VPMs to interpret Bits 16-23 as an IPC command.   

 

G. EVENT SYSTEM 

The event system is the mechanism by which the IEP is notified of conditions on 

the VPM, in other modules, or on other chassis that require servicing. It is controlled by 

the microsequencer array, part of the IEP, which monitors all sources for ‘active’ events. 

An active event is a condition or state that requires some type of action from the 

processor. Each event has a routine in firmware associated with it that can be called by 

the microsequencer to service the event. 

The IEP, via firmware, checks for active events during idle loops when software 

is stopped or before each instruction is executed when software is running. The firmware 

interrogates for and handles all active events before it executes another software 

instruction. If more than one event is active, the microsequencer prioritizes the events 

based on a configuration dependant priority scheme. The event system provides a means 

of monitoring indicators, warnings, software chain execution, and external data transfers. 

There are two parallel subsystems in the event system; the polled event system and the 

direct event system.  

The VPM also has an interrupt system similar to other processors in addition to 

the event system. Normal software execution is stopped for the handling of these 

interrupts. All of these software interrupts2, not automatically trapped by microcode, are 

signaled via activation of associated events. The interrupts to the VPM can come from 

any module in the Chassis and are divided into three classes based upon their source. 

Class I interrupts deal with hardware failures or functions. Class II interrupts indicate 

software failures or functions. And Class III interrupts are for I/O failures or functions. 

The interrupts can be locked out by class, via software commands, by setting bits 12 – 14 

in status register 1. All interrupts and the events associated with them are listed in Figure 

13.  

                                                 
2 The AYK-14 documentation refers to all three classes of processor interrupts as ‘software interupts’ 

because they can interrupt normal execution of the software for handling.  
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Interrupt
Event 
Class

Event 
Discrete

Hardware I Power Fault 0 0/1
Memory Timeout 5 1
Memory Parity 5 2
Hardware Fault Warning 5 3
I/O Failure - -
Thermal Overload 0 2/3
Hardware Fault 5 6

Software II CP Instruction Fault - -
I/O Instruction Fault - -
Floating Point 
Under/Overflow - -
Executive Return - -
Executive Mode Fault - -
Memory Protect Fault 6 0
RTC Overflow 6 1
Monitor Clock Overflow 6 2
System Reset 6 4
Processor Interrupt 0 6 6
Processor Interrupt 1 6 7
Fixed Point Overflow - -
Module Overtemp 5 7
External Interrupt 2 3 6
External Interrupt 3 5 4

I/O III
I/O Channel Abnormal 
Interrupt (ERI) 7 0/4
External Interrupt (EII) 7 1/5
Output Chain Interrupt 
(OCI) 7 2/6
Input Chain Interrupt (ICI) 7 3/7

Class

Figure 13.   Software Execution Interrupts 
 
1. Polled Event System 

Polled events are events that occur on other modules that require servicing by the 

VPM processor. They deal primarily with software chain execution or external data 

transfers. They are referred to as polled events because the event monitoring system uses 

a polling sequence to determine which events are active. The event polling system 

consists of two 8-bit busses, the event monitor bus (EMON) and the event bus (EBUS). 

The EMON bus is driven by the VPM hardware and used to pass commands to manage 

the polling sequence. The EBUS is an open collector bus that is driven by the modules of 

the event system in response to commands on the EMON bus. 
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Polled events are organized by four attributes including priority, class, group, and 

discrete. Every event is assigned to one of three priority levels, and one of eight classes. 

An important note is that the event attribute of class is separate from the interrupt 

attribute of class.  As an example, all class III interrupts shown in Figure 13 are listed in 

the event class seven. The binary form of the class, group, and discrete information of an 

event is used to form an event vector. This vector is used to point to the starting address 

in microcode of the event handling routine and is shown in Figure 14.  

There are eight different classes of events, with four dedicated to I/O events and 

four to non-I/O events.  The I/O events are further broken down into groups or channel 

pairs. Since there are only eight EBUS lines, the I/O modules must be grouped into the 

channel pairs to provide the ability for up to 16 I/O modules to activate events. This is 

explained in more detail when the polling sequence is covered.  Within each class of 

events, there are eight discrete events for non-I/O events, and four for I/O events. All of 

the events are listed by class and discrete in Appendix B (See Microcode Reference 

Manual – p 4-17). 

The event monitor continually queries the modules in the event system for events 

that have become active. It does this by cycling through a series states during which it 

determines which events are active, and which active event has the highest priority.  

These states are sent to the modules via the EMON bus and the modules responses are 

returned via the EBUS. The polling sequence is required because the modules on the 

EBUS do not each have discrete signals to indicate the presence of an event. The EMON 

bus is shown in Figure 14 along with a listing of the bits meanings. 

a. 1st State: ESTATE = 01 

The first state in the polling sequence is ESTATE = 01. In this state, the 

event monitor is requesting any active events from any module capable of initiating a 

polled event. When any module detects this state on the EMON bus and has an active 

event, that module will drive the EBUS line corresponding to the class of event that is 

active. If there are no active events, the event monitor remains in this state. If an event is 

detected on the EBUS, the event monitor will determine the highest priority class of 

event that is active and drive the ECLASS lines with that class value. If that class is an 
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I/O class (Class = 1,2,4,7), the event monitor will then transition to ESTATE = 10. If it is 

a non-I/O class (Class = 0,3,5,6) the event monitor will proceed to ESTATE = 11. 

 

Figure 14.   Event Monitor Bus Definition 

08 09 10 11 12 13 14 1500 01 02 03 04 05 06 07

1 1

Class: 000 - 111

Discrete: 000 - 111

Channel Number:
0000 - 1111

=0001
(If entered from
suspend mechanism)
= 0111

Event Vector
(Starting address of Event Handling routine in Micromemory)

00 01 02 03 04 05 06 07

EGROUP: 000, Chan. Priority 0,1
001, Chan. Priority 2.3
                 “
111, Chan. Priority E,F

ECLASS:001, 010, 100, 111 - I/O Classes
( 1  ,   2  ,   4  ,   7 )
000, 011, 101, 110 - Non-I/O Classes
( 0  ,   3  ,   5  ,   6 )

ESTATE: 00 Not Used
   01 Request Event Class
   10 Request Event Group (I/O Only)
   11 Request Event Discrete

EMON BUS
BIT Definitions

 
b. 2nd State: ESTATE = 10 

If the highest priority event class with an active event is an I/O class, then 

the event monitor will enter ESTATE 10. Along with the ESTATE bits, the monitor now 
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drives the ECLASS bits with the highest priority class with an active event. In this state, 

the event monitor is requesting all modules with active events in the class output on the 

ECLASS lines to respond on the EBUS lines. There are two I/O modules, or pairs, 

assigned to each discrete line. The event monitor will determine the highest priority 

channel pair based on the EBUS response and drive the EGROUP lines of the EMON bus 

with that value. The priority scheme used is a function of the wiring of the interconnect 

assembly for the assigned slot in the chassis. The event monitor will then transition to 

ESTATE 11. 

EBUS Event Class Response EBUS Event Group Response

EBUS I/O Event Discrete Response EBUS Non-I/O Event Discrete Response

00 01 02 03 04 05 06 07

Class 7 Response

Class 0 Response

Class 5 Response

Class 6 Response

Class 4 Response

Class 3 Response

Class 2 Response

Class 1 Response

00 01 02 03 04 05 06 07

Chan. Priority E,F

Chan. Priority 0,1

Chan. Priority A,B

Chan. Priority C,D

Chan. Priority 8,9

Chan. Priority 6,7

Chan. Priority 4,5

Chan. Priority 2,3

00 01 02 03 04 05 06 07

Even Chan. Discrete 3

Odd Chan. Discrete 0

Even Chan. Discrete 1

Even Chan. Discrete 2

Even Chan. Discrete 0

Odd Chan. Discrete 3

Odd Chan. Discrete 2

Odd Chan. Discrete 1

00 01 02 03 04 05 06 07

Discrete 7

Discrete 0

Discrete 5

Discrete 6

Discrete 4

Discrete 3

Discrete 2

Discrete 1

(All Signals shown are Asserted Active LOW)

Figure 15.   Event Bus Response Matrix 
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c. 3rd State:  ESTATE = 11 

If the highest priority event class with an active event is a non-I/O class, 

then the event monitor will enter ESTATE 11 directly from ESTATE 01. Along with the 

ESTATE bits, the monitor now drives the ECLASS bits with the highest priority class 

that has an active event. For an I/O class, the monitor will drive the highest priority 

channel pair, based on the determination from ESTATE 10, onto the EGROUP lines. For 

a non-I/O class, the monitor will drive the EGROUP lines to a known value 

corresponding to the class.   

01 11 01 10 11 01 11 01ESTATE

E Bus
Strobe

Non-I/O
Event

Sequence I/O Class Event Sequence
Non-I/O Event

Sequence
No Event

Active
No Event

Active

Sample for Discrete

Sample for Group

Sample for Class9 Clock
Cycles

1.5
Clock
Cycles

Figure 16.   Event Monitor State Sequence 
 

In this state, the module or module pair with the highest priority should 

now be the only one responding on the EBUS. For a non-I/O class, the responding 

module will drive the EBUS lines corresponding to the discrete events that it has active. 

For I/O modules, the EVEN module of the selected channel pair will respond on the 

lower four lines of the EBUS, and the ODD module will respond on the upper four lines. 

This restricts the I/O modules to only four events in each class. 

The Class, Group, and Discrete values that are obtained are then used by 

the event monitor to generate the event vector, shown in Figure 14, for microcode 

handling of the highest priority event. After creating the event vector, the event monitor 

transitions back to ESTATE 01 and begins the sequence again. The EBUS responses to 
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each ESTATE is shown in Figure 15 and the timing for the polling process is shown in 

Figure 16 for additional clarity. 

2. Direct Events  

Direct events are generated in the control address, data path, and adapter arrays 

and sent to the microsequencer array. There are also direct events that come from off the 

module as well as some generated internally in the microsequencer array. There are 63 

events that can be stored for handling in the direct event register. Direct events provide a 

means of notifying the event monitor of an immediate request for service from the 

firmware. It is more direct than the polled events but the events are still subject to priority 

logic and can be masked as well.  

Direct events from the direct event register and the events generated in the polling 

sequence are filtered through a class mask. This mask is controlled via firmware and 

provides a means to stop specific classes of events from being seen by the priority logic. 

The priority logic compares all unmasked events and determines the highest priority 

event, which is then serviced by the firmware.  

 

H. INPUT / OUTPUT MODULE OPERATION 

The I/O modules provide the communication link between the VPM processors 

and other equipment in the system.  The VPM communicates with the I/O modules via 

the XBUS and Event bus. The I/O modules communicate with other equipment via 

discrete signals and buses, specifically the MIL-STD-1553 data bus for the configuration 

recovered. The I/O modules are categorized as smart or standard based upon the amount 

of on-board processing they are capable of executing.   

1. I/O Channel Software 

There are three types of commands that are used to control the I/O modules 

operation. The first two types are ‘user’ commands that are used in operational programs 

and are considered software commands. Some of the capabilities provided are the ability 

to initiate and halt I/O channel operation, enable and disable I/O channel interrupts, load 

and store control memory words, and read I/O channel status.  
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The first type of command controls the initiation of all I/O channel operation. 

This command is the Input / Output Command Request (IOCR), Op Code 7400. This 

processor instruction, when encountered in the software during normal program 

execution, causes the processor to execute the instructions at a specific location in main 

memory called the command cell. The location of the command cell is 0060 and 0061 if 

the executing VPM is operating as the master, and 0062 and 0063 if it is operating as the 

slave. The IOCR is used in the main source code to start or stop I/O channel programs, 

monitor or modify channel operations, and modify Control Memory locations.  

The second type of command is the set of processor executable commands that 

are used in the source code to control I/O operations. These commands can be broken 

down into three classes, including Command Instructions, Chain Instructions, and 

Command/Chain Instructions, and are listed in Appendix C. The Op Codes for these 

commands fall in the range E0-FF and are illegal unless executed following an IOCR 

command. These commands can be executed by the VPM or by a Smart I/O modules. 

These are the commands that are used in the programming of I/O channel functions.  

The third type of command is the set of command words that can be sent as the 

control word of an XBUS operation. These commands are generated by the adapter and 

are used to either pass processor executed commands to the I/O module for additional 

action or to command I/O module action in response to an active event. These commands 

can be either broadcast or addressed to an individual module and can be either two word 

(command word and data word) or one word (command word only, data word is ignored) 

commands. All of these adapter generated commands are listed in Appendix D (Table A-

2 and A-3 from design guide for I/O modules).  

 
2. I/O Channel Control Memory 

Each I/O channel has associated with it a 16-bit by 16-word control memory. This 

memory is located on the VPM for standard I/O modules, but is located on the I/O 

module for Smart I/O modules. The format and definition of each word in a control 

memory is dependant upon the module, however, most modules contain the same basic 

words. The control memory contains parameters that are used in the operation of the 

associated I/O module, such as pointers to programs, word counts, and status words. As 
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an example, the Control Memory for the DSM is listed in Figure 17 with a brief 

explanation of each word’s function. 

Spare

Spare

Spare

Bit Jump Word (BJW)

Spare

Buffer Address Pointer (BAP)

Chain Address Pointer (CAP)

Address Table Pointer (ATP)

Command Word 1 / Status Word 1

Command Word 2 / Status Word 2

Message Control Word 1 (MCW1)

Message Control Word 2 (MCW2)

Discrete Control Word (DCW)

Discrete Input/Output Word   (DIOW)

Interrupt Clear Word (ICW)

Chain Table Pointer (CTP)

Control WordLocation

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

Used with bit jump Chain Instruction

Address of the next memory location in the data buffer

Address of the next Chain Instruction to be executed

Used to calculate BAP as part of data transfer command

Contains word used in 1553 protocol (depending on mode)

Contains word used in 1553 protocol (depending on mode)

Personality dependant mode and control information

Control information common to all personalities

Control info which selects mode of operation for discretes

Used for masking of discretes

Used in association with the Discrete Interrupt

Used to support Tabular Output Operations

Description

Figure 17.   DSM Control Memory 
 
3. I/O Channel Chain Programs 

All I/O channel operation is initiated through the execution of the IOCR 

instruction by the processor. This instruction causes the processor to process the 

instruction in the command cell (memory locations 0060-61 or 0062-63). The instruction 

in the command cell will be an instruction that initiates activity on one of the I/O 

channels. There are two forms of I/O channel activity; I/O information transfer and I/O 

program execution or Chaining.  

A chain program is a set of instruction, located in main memory, which perform 

an operation on an I/O channel. The program is made up only of chain instructions that 

are listed in Appendix C. The program normally transfers parameters between main 

memory and the I/O channel Control Memory, and initiates transfer of blocks or buffers 

of data or control words on the channel interface lines. Multiple I/O channels can have 

I/O chains active concurrently, with the event system providing regulation.  
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An important concept to emphasize is the difference in how chain programs are 

executed in standard and smart I/O modules. Standard I/O modules do not have the 

capability to execute software instructions (the first 2 types of commands previously 

discussed). Their chain programs are executed through the VPM processor executing the 

software commands in the chain program and sending corresponding commands (the 

third type of command previously discussed) over the XBUS to command the I/O 

module. The VPM time shares the execution of chain commands between the operational 

program and among the I/O modules with active chaining.  

Smart I/O modules are capable of executing directly all of the software 

instructions that can be used in chain programs (i.e. all commands from Appendix C.) 

This means that once an I/O operation is initiated via an IOCR command, the VPM will 

continue processing the operational program and the smart I/O module will execute the 

chain program. It is able to do this by accessing the chain instruction directly from 

memory using the XBUS.  

4. I/O Channel Software Interrupts 

Class III software level interrupts are associated with I/O module operation. These 

interrupts can be enabled or locked out on an individual channel or as a group. They are 

handled via an interrupt handling routine that the processor is vectored to upon interrupt 

recognition. These interrupts are listed in Table 2.  

Class Priority Interrupt Definition

III 1 ERI Error Interrupt

III 2 EII External Interrupt

III 3 OCI Output Chain Interrupt

III 4 ICI Input Chain Interrupt

Table 2.   I/O Channel Interrupts 
 

ERI interrupts are generated upon detection of an error condition. EII interrupts 

are generated when the I/O module receives a channel interrupt word. The interrupt word 

is stored in a table in main memory prior to generation of the interrupt. The address in the 

table is 80 plus the channel number (80-8F). OCI and ICI interrupts are generated when 
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the chain program on the associated channel encounters and executes the Interrupt 

Processor (IPR) instruction.  

5. I/O Channel Events 

There are four classes of events that can be set by I/O modules to signal active 

events to the VPM. These events are used to communicate the progress of data transfer 

operations and chain programs, and to signal software interrupts. All of the I/O events are 

listed by class and discrete in Figure 18 and a description of each is given in Table 3.  

The event system provides a means for the processor to efficiently manage the 

numerous operations occurring on the I/O channels. It allows the processor to start an 

operation on an I/O channel and then to continue executing the executive code while the 

I/O channel performs its tasks. The events allow the I/O cannels to notify the processor 

when it has completed a task and either needs more information or is ready for another 

task. It is a means of providing parallel operation of all the I/O channels. 

For example, when an I/O chain program is in progress on a channel, that channel 

will raise the Input or Output Chain Request Event. While this event is active, the 

processor will continue to execute instructions in the corresponding chain program. When 

the VPM executes an instruction that indicates a chain program is complete, the firmware 

will notify the I/O module via an XBUS command. The I/O module will then deactivate 

the chain event.  
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Event
Class Name

Event Bus Discrete

Even Channel Odd Channel

Name Name Name Name Name Name Name Name

1
(001)

Indexed
Data

Transfer

Remote
Terminal
Command

Output
Data

Request 1

Input
Data

Request 1
RTC ODR1 IDR1

2
(010)

Data
Transfer

Unique
Channel
Request

External
Interrupt
Request 2

Output
Data

Request 2

Input
Data

Request 2
UCR EIR2 ODR2 IDR2

4
(100)

I/O
Chain Map

Output
Chain

Request

Input
Chain

Request

External
Interrupt
Request 4

MAP OCR ICR EIR4

7
(111)

Class III
Interrupts

I/O
Channel

Abnormal

External
Interrupt

Output
Chain

Interrupt

Input
Chain

Interrupt
ERI EII OCI ICI

I / O Class Events

Figure 18.   Input / Output Channel Events 
 

In Figure 18 it should be noted that the Even and Odd channels have the same 

events, however, the Acronyms for the events are listed for the Odd channel to provide a 

reference. Also, the repeated discrete events (i.e. ODR1, ODR2) provide for a hierarchy 

of event priorities. 

 
6. I/O Channel Basic Operation 

The operation of either standard or Smart I/O modules involve communication on 

the Event bus, XBUS, and possibly the MBUS. Multiple I/O channels can be operating 

chain programs or data transfers at the same time with the event system and priority logic 

providing deconfliction and minimizing the amount of time that the processor spends 

waiting for a response from the I/O module.  
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Class 1: Indexed Data Transfer
Remote

Terminal
Command

Output Data
Request 1

Input Data
Request 1

RTC

ODR1

IDR1

I/O Module Event Descriptions

Class 2: Data Transfer
Unique
Channel
Request

Output Data
Request 2

Input Data
Request 2

UCR

EIR2

ODR2

IDR2

Class 4: I/O Chain

Map

Output Chain
Request

Input Chain
Request

External
Interrupt
Request 2

MAP

OCR

ICR

EIR4

Class 7: Class III Interrupts

I/O Channel
Abnormal

External
Interrupt

Output Chain
Interrupt

Input Chain
Interrupt

ERI

EII

OCI

ICI

Causes the Processor to request an Index Status Word from the I/O Module via the
XBUS. The status word is used with the Address Table Pointer (CM-7) to generate
a new output Buffer Address Pointer (CM-5)
Causes the Processor to send a data word to the I/O module as determined by the
BAP. This is the highest priority ODR and is used to give priority to time-critical I/
O modules.
Causes the Processor to request a data word from the I/O module and place it in
main memory at the location pointed to by the BAP. This is the highest priority
IDR and is used to give priority to time-critical I/O modules.

Causes the Processor to request a unique function word from the I/O module.
Depending upon the function code returned, the processor will perform a given
function. This is used if I/O module needs additional capability.
Causes the Processor to request an interrupt word from the I/O module. This event
is implemented in conjunction with the Class 7 EII event to provide the instruction
that is processed in the interrupt. This event is a higher priority event than EIR4.

Causes the Processor to send a data word to the I/O module as determined by the
BAP. This is the lower priority ODR.

Causes the Processor to request a data word from the I/O module and place it in
main memory at the location pointed to by the BAP. This is the lower priority IDR.

External
Interrupt
Request 4

Causes the Processor to request a status word 0 from the I/O module. The status
word provides the modules channel number and type code. This information is
used to construct a MAP table of all I/O modules in the system.

This event requests the processor to execute the next output chain instruction
located at the address pointed to by the output chain address pointer .

This event requests the processor to execute the next input chain instruction
located at the address pointed to by the input chain address pointer.

Causes the Processor to request an interrupt word from the I/O module. This event
is implemented in conjunction with the Class 7 EII event to provide the instruction
that is processed in the interrupt. This event is the lower priority EIR

Causes the Processor to generate a class III, priority 1 software interrupt. Used as
an error reporting mechanism by the I/O module.

Causes the Processor to generate a class III, priority 2 software interrupt. Used in
conjunction with the EIR event. This is the lowest priority class of event so that the
higher  class EIR can load the memory with the interrupt information first.
Causes the Processor to generate a class III, priority 3 software interrupt. Used to
notify processor when a certain point is reached in a chain program. For example,
if the I/O module is ready to begin data transfer.
Causes the Processor to generate a class III, priority 4 software interrupt. Used to
notify processor when a certain point is reached in a chain program. For example,
if the I/O module is ready to begin data transfer.

Table 3.   I/O Event Descriptions 
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I. DISCRETE AND SERIAL MODULE 

The Discrete and Serial Module (DSM) is a Smart Input / Output module that 

provides the AYK-14 with two interfaces to external equipment. One interface is a serial 

multiplex input/output interface in accordance with MIL-STD-1553A/B. The other is a 

16-bit input/output/discrete interface. The DSM is considered a ‘Smart’ I/O module 

because it has the capability to execute chain instructions, to read and write directly to 

memory, and to control the 1553 interface. All of the DSM’s interfaces are illustrated in 

Figure 19. 

Discrete and Serial
Module
(DSM)

1553 BUS A

1553 BUS B

16 Discrete Bus

XBUS

EMON

EBUS

Figure 19.   Discrete and Serial Module Interfaces 
 
1. DSM Personalities and Modes 

The DSM can be configured to operate in different configurations in order to 

provide flexibility and adaptability to the AYK-14. These configurations allow the 1553 

portion of the DSM to perform like earlier I/O modules, specifically the SIM-A and SIM-

B. The DSM can be configured with three personalities that include the SIM-A, SIM-B, 

and Alternate SIM-B. The SIM-A personality provides the capability to operate using the 

1553A protocol. The SIM-B personality provides both the 1553A and 1553B protocol. 

Finally, the alternate SIM-B adds additional restrictions concerning chaining operation in 

addition to the 1553A/B capability. In every personality, the 1553 interface of the DSM 
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can operate in one of three modes, which include Self-test, Remote Terminal/Bus 

Monitor, and Bus Controller. These modes define the role of the DSM within the 1553 

bus architecture.  

2. Smart I/O Operation 

The two features of the DSM that distinguish it from other I/O modules and make 

it a ‘Smart’ module are first, the ability to read and write directly to memory, and second, 

the ability to execute I/O instructions. This capability provides a good deal of autonomy 

to the DSM and greatly reduces the number of instructions that the VPM is required to 

execute during any I/O operation. The DSM has the ability to execute most of the I/O 

command and chain instructions in the VPM’s instruction set.  

The initiation of operations on the DSM still requires the VPM to execute an 

IOCR instruction. Once initiated, the DSM requests the command or chain instructions 

directly from memory via an XBUS operation using its on-board Control Memory. The 

on-board control memory is an important distinction between standard and smart I/O 

modules. The presence of the information contained in the Control Memory on-board is 

essential for the DSM to request and execute it’s own instructions. For example, in order 

for the DSM to request a chain program instruction, it must have the Chain Address 

Pointer (CAP), which indicates the address of the next chain instruction.  

The DSM requests instructions from memory using a 16 bit local address formed 

using information in the Control Memory. The adapter on the Master VPM then performs 

an address conversion, using page set 0, to obtain the absolute address. If the address is 

not located on the master VPM’s OBM, an MBUS operation can be used to transfer the 

requested data to the master VPM and back to the requesting DSM.  The DSM, therefore, 

has the capability to reach any memory addressable by the VPM.  

The DSM also has the same capability as standard I/O modules of executing 

instructions sent as part of the command word over the XBUS. These commands are sent 

when the VPM executes an I/O command instruction. They can be broadcast to all I/O 

modules or addressed directly to an individual module and are used primarily to set or 

clear I/O events. All of the XBUS commands that apply to the DSM are listed in Table 4.  
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Broadcast
0 0 0 0 X X X X X X X X X X X X 1 1 0 1 1 1 0 1 Set Boot Enable
0 0 0 0 X X X X X X X X X X X X 1 1 0 1 1 1 0 1 CLR Boot Enable
0 0 0 1 X X X X X X X X X X X X 1 1 0 1 1 1 0 1 Bit Restart
X 1 1 0 0 0 0 0 X X X X X 0 0 0 1 1 0 1 1 1 X 1 Master CLR
X 1 1 0 0 0 0 0 X X X X X 1 0 0 1 1 0 1 1 1 X 1 Set EIE
X 1 1 0 0 0 0 0 X X X X X 1 0 1 1 1 0 1 1 1 X 1 CLR EIE
X 1 1 0 0 0 0 0 X X X X X 1 1 0 1 1 0 1 1 1 X 1 Set Class III Enable
X 1 1 0 0 0 0 0 X X X X X 1 1 1 1 1 0 1 1 1 X 1 Clear Class III Enable
1 1 1 0 1 0 1 1 X X X X X X X X 1 1 0 1 1 1 X 1 Set Map Event

Nonbroadcast
X X X X X X X X X X X X X X X X 0 1 0 0 P P P P Set XCMD Notice
X 1 1 0 0 0 0 0 X X X X X 0 0 0 1 X 0 0 P P P P Set CXMC Notice
1 1 1 0 1 1 1 1 X X X X 1 0 0 0 1 X 0 0 P P P P CLR Map Event
X 1 1 0 0 0 0 0 X X X X X 1 0 0 1 X 0 0 P P P P Set EIE
X 1 1 0 0 0 0 0 X X X X X 1 0 1 1 X 0 0 P P P P Clear EIE
X 1 1 0 0 0 0 0 X X X X X 1 1 0 1 X 0 0 P P P P Set Class III Enable
X 1 1 0 0 0 0 0 X X X X X 1 1 1 1 X 0 0 P P P P Clear Class III Enable
1 1 1 0 1 1 1 1 X X X X 0 1 0 0 1 X 0 0 P P P P CLR Class 2 DISC 0/4
1 1 1 0 1 1 1 1 X X X X 0 1 0 1 1 X 0 0 P P P P CLR Class 2 DISC 1/5
1 1 1 0 1 1 1 1 X X X X 0 1 1 0 1 X 0 0 P P P P CLR Class 2 DISC 2/6
1 1 1 0 1 1 1 1 X X X X 0 1 1 1 1 X 0 0 P P P P CLR Class 2 DISC 3/7
1 1 1 0 1 1 1 1 X X X X 1 0 0 0 1 X 0 0 P P P P CLR Class 4 DISC 0/4
1 1 1 0 1 1 1 1 X X X X 1 0 0 1 1 X 0 0 P P P P CLR Class 4 DISC 1/5
1 1 1 0 1 1 1 1 X X X X 1 0 1 0 1 X 0 0 P P P P CLR Class 4 DISC 2/6
1 1 1 0 1 1 1 1 X X X X 1 0 1 1 1 X 0 0 P P P P CLR Class 4 DISC 3/7
1 1 1 0 1 1 1 1 X X X X 1 1 0 0 1 X 0 0 P P P P CLR Class 7 DISC 0/4
1 1 1 0 1 1 1 1 X X X X 1 1 0 1 1 X 0 0 P P P P CLR Class 7 DISC 1/5
1 1 1 0 1 1 1 1 X X X X 1 1 1 0 1 X 0 0 P P P P CLR Class 7 DISC 2/6
1 1 1 0 1 1 1 1 X X X X 1 1 1 1 1 X 0 0 P P P P CLR Class 7 DISC 3/7

OPCODE a m FUNCTION CODE

Table 4.   XBUS Commands – VPM to DSM 
 

J. COMPUTER CONTROL UNIT 

The Computer Control Unit (CCU) is a laboratory support unit that interfaces 

with the AYK-14 via a maintenance support channel. It provides the ability to load 

programs, display memory contents, set breakpoints and run software. The current 

version of the support unit is an emulator of the original that can run on a PC using DOS. 

The emulator (CCU/E) provides the same basic functional capabilities as the original 

CCU.  

The CCU provides an extremely useful interface for troubleshooting hardware 

and software, or for gaining a better understanding of the AYK-14’s internal operations. 

The software can be executed one instruction at a time (single-step) or run to a predefined 

location. The contents of memory, including registers, control memory, and OBM, can be 
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displayed using appropriate commands. The contents of memory can be changed via 

CCU commands as well in order to insert instructions to test hardware or debug software. 

Because the CCU is connected to the AYK-14 through the Maintenance Support 

Channel, all I/O channels are available for use in testing. The channels can be connected 

to external hardware or connected to each other for testing.  
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III. DESIGN IMPLEMENTATION 

Once the design has been sufficiently recovered to provide a detailed 

understanding of the operation, the next step in the reengineering process is to begin the 

forward engineering of the new design. The difficulty in beginning the forward 

engineering process is deciding when the design has been adequately recovered. For a 

design as complex as the AYK-14, the design recovery could continue to reveal new 

aspects of the design almost indefinitely. However, once the design is thoroughly 

understood, the forward engineering process will actually provide more insight into the 

design than continuing with the design recovery. This is due to many factors including, 

first, that during the forward design process you continually become aware of what you 

do not know, which leads to more design recovery. And second, failures in the testing 

and validation of the new design will reveal and highlight misunderstanding of the 

recovered design.  

This chapter will discuss the forward design process of the VPM adapter, 

specifically, the implementation process for the recovered design.  

A. FORWARD ENGINEERING PROCESS 

1. Field Programmable Gate Array 

The first step in the forward engineering process is to determine how the new 

design is to be implemented. The target selected for this design was a Field 

Programmable Gate Array. This target was chosen due to the advantages of designing 

with FPGAs, specifically, the reduced time to develop and field products, the ability to 

maintain an open architecture, and the ability to design an entire system on a chip. (Ref. 1 

p.29) 

The ability to design a system on a chip is a key advantage to using an FPGA for 

this thesis. This is an advantage for two reasons. First, this thesis is the continuation of 

CDR Mike Croskrey’s thesis (Ref. 1) in which he designed the processor module of the 

VPM using an FPGA. The ability to design another module, the Adapter, and combine 

the two designs into a larger system that can be re-implemented is a key advantage. 

Second, because there will be additional designs that will need to be combined with this 
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design to finally reach the goal of reengineering the AYK-14, the FPGA provides the 

means to continue to expand the system.  

Another important advantage to using an FPGA is the ability to rapidly prototype 

the new design. This is an advantage for reengineering because it provides the means to 

incorporate aspects of the design that were not recovered until the testing phase. This is 

essential in reengineering because there inevitably are aspects of the design that can not 

recovered from even the most detailed documentation. 

2. VHSIC Hardware Design Language (VHDL) 

In generating designs to be implemented onto FPGAs, there are multiple methods 

of describing the design dependant upon the software tools used for the design flow. 

These methods can be divided into graphical, code, or a combination of both. The 

graphical methods, such as schematic capture, provide a drag and drop approach which 

allows vendor specific components to be connected to form a design. The behavior of 

some of these components can be modified, and new components created, to allow 

addition design flexibility.  

The advantage of the graphical method is the visual layout that it provides 

because it helps the user to visualize the ‘hardware’ being designed. Some of the 

disadvantages to this method are the limitations on components based on the contents of 

the vendor’s libraries, the inability to troubleshoot problems past the component or 

‘black-box’ level, and lack of portability due to use of proprietary components. The lack 

of portability is the most important problem with the graphical methods because one of 

the goals of the reengineering process is an open architecture. 

The code or programming method of describing a design has advantages and 

disadvantages as well. The advantages include the ability to design from the most 

primitive level and to modify the design at all levels of complexity. Another advantage is 

the portability of design due to the standardization of the design languages. The primary 

disadvantages of the programming approach are the difficulty visualizing the design due 

to the abstract nature of the code and the requirement to understand how the code is 

translated into a hardware implementation. An example of the difficulty of using software 

to describe hardware is the sequential operation of most software (i.e. C++) programs 

42 



versus the concurrent operation of hardware. For this thesis, the programming approach 

to hardware design was chosen for the advantages of portability, open architecture, and 

the ability to modify the design at all levels of complexity.  

The VHSIC (Very High Speed Integrated Circuit) Hardware Design Language 

was used as the language to describe the design for implementation. VHDL is a hardware 

description language that was developed by the Department of Defense and given to the 

IEEE for standardization. It was designed to provide a language for describing hardware 

with a wide range of descriptive capability that would be independent of technology or 

design methodology.  

3. FPGA Design Tools 

The implementation of a design from a set of specifications through to hardware 

operation follows a specific set of steps, or design flow. When the target of the design is 

an FPGA, these steps are modified to include processes required to translate the design to 

a form than can be loaded onto the targeted chip. Figure 20 (Ref. 8, p33) illustrates the 

generic design flow in contrast to the FPGA specific design flow. The steps highlighted 

in grey in Figure 20 require the use of software tools to be performed. In addition to 

performing the necessary FPGA specific functions such as Map, Place, and Route, the 

tools provide additional editing and simulating functions that provide assistance in 

maintaining proper format and debugging code. 

The reliance of the design process on software tools can cause difficulty and 

inefficiency in the FPGA Design process. The first cause of difficulty can originate from 

the functions that the software tools use to interpret the design and translate it into a form 

that can be simulated and implemented. These steps are complex and can generate errors 

that are often difficult to correct without a thorough understanding of the processes that 

are taking place.  Another cause of difficulty can be the abstract level of designing with a 

hardware description language. Because the software tool creates the design from the 

language description, it can be difficult to visualize the ‘hardware’ implementation of the 

design. This, again, can cause difficulty in correcting errors in the design performance 

based on simulation. 
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Get Specifications

Define Inputs and Outputs

Design Entry:
via Schematic / State Machine / VHDL

Functional Simulation of the Design

Map, Place, and Route to an FPGA

Timing Simulation of mapped Design

Download to FPGA on Design Board
using User Constraint File

Debug the Design using Logic Analyser

Get Specifications

Define Inputs and Outputs

Create Truth Tables

Derive Boolean Equations

Create Gate Level Design

Simulate Gate Level Design

Build Digital Circuit

Debug Digital Circuit

Generic Hardware
Design Flow

FPGA Specific
Design Flow
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3

4

5

6

7

8

Figure 20.   Hardware Design Flow  
 

 In the process of implementing the design for this thesis, four FPGA Design 

software tools were used. They included Xilinx Foundation, Xilinx ISE, ALDEC Active-

HDL, and Synplicity Synplify Pro. Multiple tools were utilized during the design process 

to explore the advantages of each and to determine the most efficient method of getting 

from design to implementation. The majority of this thesis was created and implemented 

using Foundation primarily due to the author’s familiarity with the tool.  
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4. Finite State Machine Design 

 The design of complex hardware using powerful tools such as VHDL requires a 

methodology that allows extreme flexibility to meet varied requirements while providing 

an efficient and repeatable technique. The methodology that is generally regarded as the 

best way of meeting these goals is the Finite State Machine approach. In the finite state 

machine approach, the behavior of the design is divided into discrete states. In each state, 

the previous state and the input signals determine the next state. The values of all output 

signals are determined by the current state and the input signals. The state machine 

transitions from the current state to the next state based upon a synchronous signal or 

clock. There are many different approaches to designing state machines using VHDL. 

The method outlined in Reference 9 was used as the model for this thesis. Because of the 

complexity of the recovered design and the modular approach to reengineering it, the use 

of a very structured method to design the state machines was essential in order to create a 

design that was clear, readable, and easy to modify. 

Current State
Vector Register

(Process 2)

Next State
Conditioning Logic

(Process 1)

Output
Conditioning Logic

(Process 3)

Inputs

Outputs

Finite State Machine

Figure 21.   Finite State Machine Structure [After Ref. 9] 
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In this method, the state machine is divided into three blocks as shown in Figure 

21. The Next State and Output Conditioning Logic blocks are combinatorial. This means 

that the outputs of these blocks change asynchronously based on the current state and 

changes in the inputs.  The Current State register, in contrast, retains current state 

information and propagates next state information synchronously. This division of logic 

provides a simple structure to use in creating the state machine. 

The first step in this method is to define the inputs and outputs. It is essential in 

this step to include all signals that can have any effect on or are affected by the 

component being designed. This is a step that is often repeated during the design process 

as the states and state transitions become more clearly defined.  

The second step is to determine all of the possible states and state transitions. This 

is done through the creation of a state diagram. The state diagram is a tool used to 

illustrate the states and the state transitions in a logic format. It is an effective tool for 

visualizing the operation of a design, especially when using an abstract method of design 

description such as VHDL. Some of the software tools even have state machine editors 

that help create code from a diagram and vice-versa. Examples of state diagrams for each 

of the components designed are listed in Figures 26-30.   

The third step is creating the three blocks of the state machine based upon the 

input, outputs, states, and state transitions. Each of these blocks is created as an 

individual process in VHDL. The first block is the Next State block (Process 1). This 

block is combinatorial and is dependant upon the current state, inputs, and outputs. The 

purpose of this process is to determine the next state that the state machine will transition 

into on the next clock cycle. The second block is the Current State register (Process 2). 

The purpose of this process is to advance the state machine to the next state, as 

determined by the Next State process, synchronously and also to handle system resets. 

The third block is the Output Conditioning block (Process 3). This block is also 

combinatorial and is dependant upon the current state and the inputs. The purpose of this 

block is to determine the outputs of the state machine.  
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5. Modular Approach to Overall Design 

A modular approach was taken in the reengineering of the adapter because of the 

advantages of the combination of the State Machine method of hardware design along 

with the capability of VHDL to combine smaller components into a larger design. This 

approach allowed the design to be broken down into smaller, simpler designs based upon 

functionality. It also allowed the reusability of components and code to help make the 

design more understandable and easier to modify, much like the advantages to an object 

oriented approach in software design.  

This modular approach also takes advantage of the rapid prototyping benefit of 

using FPGAs. This is done by adding functionality to the design simply through the 

addition of new components. The new design can quickly be tested at both the simulation 

level and actual hardware implementation level. The advantage here is that the design 

does not need to be completely defined early in the design process and that testing can 

continually be done to provide feedback and changes to the design. This is critical in the 

reengineering process since the goal is a design that has the same functionality as the 

replaced design, and therefore must be tested versus the original design’s performance. 

As an example, in the adapter design, the memory interface was designed and tested as 

the first component. As additional components were created, they were tested 

individually and then in combination with the memory interface. This method allowed 

efficient and reliable detection of design errors.  

B. TARGET FOR DESIGN IMPLMENTATION 

The goal of the FPGA design process is to implement the design and load it onto a 

development board for testing and design validation. The three primary factors that were 

used in choosing a platform to economically implement this design were FPGA size, 

number of input / output ports, and memory capabilities. The development board chosen 

for this thesis was the Xilinx Virtex-E FPGA Development Kit from AVNET Design 

Services. The functional layout of the development kit is illustrated in Figure 22 (Ref. 

10).  

The FPGA used on this development kit is the Xilinx Virtex-E XCV1000E-

6FG1156. The first reason this FPGA was selected is due to the author’s experience and 
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familiarity with Xilinx FPGAs and Xilinx design software products. As previously 

mentioned, a thorough understanding with the software tools is critical to efficient FPGA 

design. A second reason for selection of this FPGA was the size of the chip in terms of 

number of logic gates as well as the number of off chip ports and chip speed. The Virtex-

E XCV1000 has over 1,000,000 logic gates and 512 assignable off-chip ports, and is 

capable of operating at speeds as high as 200 MHz.   The number of logic gates and the 

maximum operating frequency meet or exceed the capabilities of the targeted FPGA used 

in CDR Croskrey’s design (Ref. 1, p34-36.) The XCV 1000 is therefore considered to 

have the additional capability available to expand the design to include the adapter 

control and interface. The number of available off chip ports (512) far exceed the number 

of required adapter Input / Output lines (152) which provides additional ports for the 

output of critical internal data and control signals for testing and troubleshooting. 

Figure 22.   VIRTEX-E Development Board Functional Layout 
 

The Virtex-E development board is configured with a 64-bit wide data bus for use 

of both on-board Flash and SDRAM memory. Common data and address buses are used 

to connect the FPGA with both Flash and SDRAM as well as I/O memory connectors. 

The SDRAM has a capacity of 64 Mbytes and the Flash has a capacity of 32 Mbytes. 

This memory configuration has both advantages and disadvantages for the 

implementation of this design. The first advantage is that the size of the memory is 
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sufficient to cover the entire OBM of the targeted design in either Flash or SDRAM. The 

second advantage is that the memory I/O connectors provide the means to either expand 

the memory capability or monitor memory activity. A disadvantage to the memory 

configuration is the use of SDRAM with no associated SDRAM controller. In order to 

use the SDRAM, a controller had to be designed and implemented to interface with the 

overall project design. The SDRAM also has latencies associated with reads and writes 

for non-sequential memory accesses. These disadvantages can be overcome with the 

addition of a cache memory component to make more efficient use of the existing 

memory configuration. However, the cache design is left to future students continuing on 

the implementation of the AYK-14.  

 

C. COMPONENT DESIGN DESCRIPTION 

The functions of the adapter were broken down into components, based upon 

function, in order to simplify the state machine design process and to enable reuse of 

code rather than duplication of effort. The components that make up the design are 

illustrated in Figure 23. The VHDL code for each component discussed is listed in 

Appendix E. 
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Figure 23.   Adapter Design Components 
 
1. SDRAM Controller 

The memory available on the Virtex-E development board consists of Flash and 

SDRAM as outlined previously. The SDRAM was targeted to be used as the on board 

memory for the adapter design. A brief summary of the operation of this type of memory 

is presented in order to clarify the requirements of an SDRAM controller. 

Synchronous Dynamic Random Access Memory (SDRAM) is a form of memory 

that is termed dynamic because it requires recharging or refreshing of its memory 

contents periodically, and termed synchronous because all signals are registered on the 

positive edge of the input clock signal. The components that make up the memory units 
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in an SDRAM consist of capacitors and transistors and the capacitors require recharging 

because they lose their charge when they are accessed or due to leakage over time. The 

development board uses four Micron 256 Mb Chips MT48LC16M16A2, each of which is 

internally configured as four 67,108,864-bit banks organized as 8,192 rows by 512 

columns by 16 bits (Ref. 11). Based on this configuration each memory location, 

consisting of 16 bits, is defined by a bank, row, and column. Read and write accesses are 

burst oriented which allows sequential memory locations to be accessed in lengths of 1, 

2, 4, or 8 locations. The internal SDRAM control logic maintains a loadable mode 

register that sets certain mode operation constraints. A functional block diagram of a 

single 256Mb SDRAM is illustrated in Figure 24. It should be noted that there are only 

13 address lines because they are used for addressing either the column or the row 

depending upon the control signals present.   

Figure 24.   SDRAM Functional Block Diagram 
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The complexity of SDRAM operation requires a memory controller to be used in 

order to meet all the maintenance requirements of the chip including precharging before a 

memory access, periodic refreshing of all memory locations, and providing the control 

signals to read or write to memory. This allows memory accesses to be treated as 

independent of the memory source when creating the other components that require 

access to memory. This method also provides the capability to expand the design in the 

future to include a cache to increase system performance. 

Due to the complexity required in the design of an SDRAM controller and the 

time constraints of the design process, the design for the SDRAM controller was adapted 

from existing designs. The design that was ultimately selected was the XSA SDRAM 

controller from the XESS Corporation. The original design for this controller was written 

in VHDL and targeted to a different development board. It was modified and tested to 

operate with the SDRAM configuration on the Virtex-E development board. The 

controller interface is illustrated in Figure 25. 
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Figure 25.   SDRAM Controller Interface 
 
2. Memory Arbitrator 

The Memory Arbitrator is the component that provides the interface between each 

memory user and the SDRAM controller. The three possible users of memory are the 

Processor, the XBUS, and the Memory Bus. The Arbitrator monitors requests for 

memory from the three users and grants use based on a rotating priority scheme. The 

scheme is based on the rotating scheme as described in MBUS arbitration. The rotation 

scheme insures that each component is allowed memory use at least one out of every 

three memory accesses. The priority is based upon the current user, the last user, and the 

users requesting access. The default priority is the Processor, the XBUS, and then the 

MBUS based upon the expected frequency of use. 

The design is based on the three-process State Machine method previously 

discussed. The priority in each state is accomplished using if-then statements. Because 
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these statements are executed sequentially, levels of priority can be assigned through the 

order of the statements. Using this method, each state had a different order of priority of 

the two remaining states. The state diagram is shown in Figure 26. The following 

description of State Diagram symbology applies to all state diagrams shown in this thesis. 

The names used in the state diagram are intended to reflect the names of the states 

and signals used in the VHDL code. The words attached to each arrow indicate the 

signals that are required to be true in order for the state transition to occur. If a signal is 

asserted low, the signal name will have a ‘_L’ appended to it. If the condition to be met 

for transition is that a signal is NOT asserted, the signal name will be enclosed in 

parentheses. The boxes next to certain states contain the signals that are driven while in 

that state. The ampersand symbol (&) is used to indicate a logical AND of conditions to 

be met for signal transition.  
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3. MBUS Controller 

The MBUS controller is the component that controls the Memory Bus interface 

between the processor, external users, and on board memory. Its primary function is to 

operate the bus control signals required by the MBUS protocol. This protocol includes all 

required control signal, timing requirements, parity generation, and error detection. It 

requests use of the on board memory for reads or writes by external bus users.  It also 

operates as the MBUS arbitrator by determining the priority user and granting usage of 

the bus.  
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The design is based on the three process state machine previously discussed. 

There are four basic types of operation that can occur on the MBUS. The first two are 

either a read or a write by the processor and the second two are either a read or write by 
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an external user. The state diagram for the controller is illustrated in Figures 27 and 28. 

The diagram was split into two figures for clarity of state flow with the Idle state serving 

as a common State between the Figures. Figure 27 illustrates the states for bus usage by 

the processor and Figure 28 illustrates bus usage by an external user.  

The MBUS Controller design has two components included to provide MBUS 

usage arbitration and parity generation. The component Grant Logic performs the bus 

arbitration in a rotating priority scheme. It is a three process state machine with priority 

logic similar to the Memory Arbitrator. The function of arbitration was accomplished 

using a component in order to facilitate design reuse. The component OddParityGen is an 

odd parity generator used to generate parity for transmission or for comparison with 

received parity to provided error detection. 

4. XBUS Controller 

The XBUS controller is the component that controls the XBUS interface between 

the processor, external users, and on board memory.  Its primary function is to operate the 

bus control signals required by the XBUS protocol. It requests the use of on board 

memory for reads and writes by external users. It also operates as the XBUS arbitrator by 

determining the priority user and granting usage of the bus. 

The design is based on the three process state machine previously discussed. The 

XBUS operation was divided into three basic types of operation, output, input, and 

broadcast. The users were also divided into two groups, the processor and the external 

users. The state diagram for the controller is illustrated in Figures 29 and 30. The diagram 

was split into two figures for clarity of state flow with the Idle state serving as a common 

State between the Figures. Figure 29 illustrates the states for bus usage by the processor 

and Figure 30 illustrates bus usage by an external user. 

The XBUS controller has a component included to provide bus user arbitration. 

The component X_GRANT_LOGIC performs the arbitration in a rotating priority 

scheme similar to the Memory Arbitrator component. This component ensures each users 

has control of the bus at least once every seven uses (there are seven users of the XBUS).  
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5. Event Bus Controller 

The Event Bus Controller is the component that determines the highest active 

event using the event polling sequence on the Event and Event Monitor busses. It also 

generates the Event vector to notify the processor of the highest active event. The design 

was based on the three process state machine. It requires a timer in order to meet the 

Event bus protocol. The timer logic is based upon the operating frequency of the intended 

design. If the design is targeted to a faster clock frequency, only one constant needs to be 
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updated in the design to allow the component to continue to meet the timing constraints. 

The state diagram for the Event Bus Controller is illustrated in Figure 31. 

Idle

Class_Req

Group_Req

Discrete_Req

(E_BUS)

E_BUS

E_B
US =

 1 
or

 2 
or

 4 
or

 7

&
 C

lk
_C

ou
nt

E_BUS = 0 or 3 or 5 or 6
& Clk_Count

Clk_Count

Cl
k_

Co
un

t

(Clk_Count)(Clk_Count)

(Clk_Count)

Figure 31.   Event Controller State Diagram 
 
6. Top Level Design Interface 

The Top Level Design Interface is simply the component that combines all of the 

previous components into a single entity. It connects all of the components, including the 

Processor, via internal signals as shown in Figure 23. It also connects all of the 

appropriate signals to input or output ports.  
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IV. CONCLUSIONS  

There were three primary goals that this thesis set out to achieve. The first was the 

reengineering of the adapter module on the VPM of the AYK-14. This goal was a 

milestone toward the larger goal of validating the theory that a binary compatable 

processor, designed using FPGA technology, would be a viable solution to deal with the 

growing legacy avionics problem in the Department of Defense. In terms of this second 

goal, this thesis attempted to continue the process of reengineering the processor begun 

with CDR Croskrey’s work in his Master’s thesis. The third goal of this thesis was to 

create a reference that summarized the operation of the AYK-14 emphasizing VPM to 

I/O module communication. 

 In terms of this first goal, this thesis succeeded in the reengineering process to the 

level of simulating a design whose performance matched the operation of the VPM 

adapter based upon design documentation. It should be stressed that this performance 

comparison is based on performance descriptions and diagrams from the design 

documentation. This is stressed because an important lesson learned was the need for 

actual hardware for use in testing early in the design recovery process.  

The reason for this requirement for hardware is the difficulty in recovering a 

design from documentation alone. There was a large amount of documentation available 

for the AYK-14. However, due to the AYK-14’s complexity, age, and numerous 

upgrades over its lifecycle, the documentation did not cover every aspect of the design to 

the level required for a complete design recovery.  An AYK-14 was available with a 

CCU testing unit during the early stages of the design recovery but due to the complexity 

of the CCU interface, it did not provide useful information until the design was more 

clearly understood. The testing that was needed to aid in the design and validate the 

simulated design was a sampling of all bus operation using a logic analyzer. 

In terms of the second goal, this thesis demonstrated that a complex design could 

be recovered and reengineered using the tools available to design FPGAs. 
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The third goal of this thesis was accomplished as a byproduct of the design 

recovery process. The difficulty in creating a summary of the AYK-14 operation without 

full and detailed testing is that the summary is only as valid as the documentation it was 

taken from. However, because of the numerous and varied sources of information, this 

document will at least serve as a starting point for a more detailed study. It will also 

clarify concepts regarding the I/O system that are difficult to understand without a 

detailed understanding of AYK-14 operation. 
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APPENDIX A: DOCUMENTATION LIST FOR THE AYK-14 
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APPENDIX B: DIRECT AND POLLED EVENTS 

Event Class  
Discrete Event Description 
  
Event Class 0  
Discrete 0 Internal power down/power fail  
Discrete 1 External power down 
Discrete 2 Internal PCM thermal/thermal  fault 
Discrete 3 External PCM thermal 
Discrete 4 MBUS timeout 
Discrete 5 XBUS timeout 
Discrete 6 Embedded power fail 
Discrete 7 - 
  
Event Class 1  
Discrete 0 Even channel RTCMD 
Discrete 1 Even channel ODR 
Discrete 2 Even channel IDR 
Discrete 3 - 
Discrete 4 Odd channel RTCMD 
Discrete 5 Odd channel ODR 
Discrete 6 Odd channel IDR 
Discrete 7 - 
  
Event Class 2  
Discrete 0 Even channel UCR/restart 
Discrete 1 Even channel EIR 
Discrete 2 Even channel ODR 
Discrete 3 Even channel IDR 
Discrete 4 Odd channel UCR 
Discrete 5 Odd channel EIR 
Discrete 6 Odd channel ODR 
Discrete 7 Odd channel IDR 
  
Event Class 3  
Discrete 0 Microevent 1/stop 
Discrete 1 Watchdog timer 
Discrete 2 File multiple bit error 
Discrete 3 PA event/SIOP & ERI 
Discrete 4 CCU event 
Discrete 5 PB event/SYNC & IOCR & EII 
Discrete 6 External interrupt event 2 
Discrete 7 External Stop/step/run 
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Event Class  
Discrete Event Description 
  
Event Class 4  
Discrete 0 Even channel MAP 
Discrete 1 Even channel OCR 
Discrete 2 Even channel ICR 
Discrete 3 Even channel EIR 
Discrete 4 Odd channel MAP 
Discrete 5 Odd channel OCR 
Discrete 6 Odd channel ICR 
Discrete 7 Odd channel EIR 
  
Event Class 5  
Discrete 0 Recoverable error 
Discrete 1 Operand memory error 
Discrete 2 Instruction memory error or MCM parity fault 
Discrete 3 Hardware fault warning 
Discrete 4 External interrupt event 3 
Discrete 5 Microevent 0 
Discrete 6 Hardware fault (BIT error) 
Discrete 7 Module overtemp event 
  
Event Class 6  
Discrete 0 Memory protect fault 
Discrete 1 RTC lower overflow 
Discrete 2 Monitor clock overflow 
Discrete 3 - 
Discrete 4 System reset 
Discrete 5 Initial program load 
Discrete 6 External event 0/IPI 0 
Discrete 7 External event 1API 1 
  
Event Class 7  
Discrete 0 Even channel ERI or microevent 2 
Discrete 1 Even channel Ell 
Discrete 2 Even channel OCI 
Discrete 3 Even channel ICI 
Discrete 4 Odd channel ERI 
Discrete 5 Odd channel EII 
Discrete 6 Odd channel OCI 
Discrete 7 Odd channel ICI 
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APPENDIX C: I/O INSTRUCTIONS 

COMMAND CHAIN INSTRUCTIONS 
Mnemonic Hex Instruction 

ACR  EO 0 0  CHANNEL CONTROL Master clear all channels 
 

ACR4  E004 CHANNEL CONTROL Enable external 4 interrupts, all channels 
CCR0,4    

 
ACR5 EO 0 5 CHANNEL CONTROL Disable external interrupts, all channels 
CCR0,5   

 
ACR6 EO 0 6 CHANNEL CONTROL Enable class III interrupts, priorities 2,3,4 
CCR0,6   

 
ACR6 EO a 6 CHANNEL CONTROL Enable class III interrupts, priorities 2,3,4 
CCRa,6  for channels with priority less than channel a 

 
ACR7 EO 0 7 CHANNEL CONTROL Disable class III interrupts, priorities 2,3,4 
CCR0,7   

 
ACR7 EO a 7 CHANNEL CONTROL Disable class III interrupts, priorities 2,3,4 
CCRa,7  for channels with priority less than channel a 

 
CCRa,12 EO a C CHANNEL CONTROL Enable channel a external interrupts 

 
CCRa,13 EO a D CHANNEL CONTROL Disable channel a external interrupts 

 
CCRa,14 EO a E CHANNEL CONTROL Enable channel a,class III, priorities 2,3,4 

 
CCRa,15 EO a F CHANNEL CONTROL Disable channel a, class III; priorities 2,3,4

 
CCRa,8 EO a 8 CHANNEL CONTROL Master clear channel a 
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COMMAND INSTRUCTIONS 
Mnemonic Hex Instruction 
ICKa,y E6 a 2 INITIATE INPUT CHAIN Y->Channel 
  a Chain Pointer; initiate input chain 

 
OCKa,y E6 a 6 INITIATE OUTPUT CHAIN Y->Channel 
  a Chain Pointer; initiate output chain 

 
TOCKa,y,m  E6 a F INITIATE OUTPUT CHAIN Y is 
  chain table pointer; initiate tabular output chain 

 
RIMa,y,m EB a m READ CONTROL MEMORY Channel 
  a (CMm)->Y 

 
SICRa,m F8 a m SET AND CLEAR DISCRETES Set 
  or clear channel a discrete function 

 
SIOPm,y FC - m START SLAVE m:0->EIOP/slave 
  VPM/slave SCP SR1:12,Y->EIOP/slave VPM/ 
  slave SCP P if m=0 or 1 

 
SSTa,y,m FB a m STORE STATUS Channel a status 
  bits per m->Y 

 
WIMa,y,m E7 a m WRITE CONTROL MEMORY (Y)-> 
  Channel a CMm 

 
XIMa,y,m FE a m EXCHANGE CONTROL MEMORY Channel 
  a (CMm)->Y;(Y+1)->Channel a CMm 
  rf m=2 or 6. If m#2or6,1/O instruction fault. 
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COMMAND CHAIN INSTRUCTIONS 
Mnemonic Hex Instruction 
BJm,y FD - m BIT JUMP Y->CAP if(CM3):m=1 

 
CSIRm F8 0 m SERIAL INTERFACE CONTROL Set 
  or clear discrete function 

 
CSSTy,m FB - m STORE STATUS Status bits per m->Y 

 
HCR EC 0 0 HALT CHAIN Halt chaining, a even 

 
IMa,y,m E2 a m INITIATE MESSAGE Y->CMm; 
  initiate message activity 

 
IOa,y E3 a 0 10 FUNCTION a (Y<Y+1)->BCW,BAP; 
  initiate transfer 

 
IPR EC1 0 INTERRUPT PROCESSOR Generate 
  chain interrupt, a odd 

 
LCM m,y E7 0 m LOAD CONTROL MEMORY (Y)->CMm 

 
LCMKm,y E6 0 m LOAD CONTROL MEMORY Y->CMm 

 
SCMm,y EB 0 m STORE CONTROL MEMORY (CMm)->Y 

 
SFy EF 1 0 SET FLAG 1->y:15,14, a odd 

 
SFSCm F4 0 m SEARCH FOR SYNC Perform 
  function(s) assigned to m-bits 

 
SJMCa,y F2 a 0 SERIAL JUMP ON MET CONDITION Y->CAP 

 
XCMm,y FE - m EXCHANGE CONTROL MEMORY (CMm)->Y; 
  (Y+1)->CMm 

 
ZFy EF 0 0 ZERO FLAG 0->Y:15,14, a even 
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APPENDIX D: XBUS COMMAND WORDS 

The first section of Appendix D describes the processor to I/O channel interaction on the 
XBUS (I/O Bus) for various I/O software instructions. Each software instruction is listed 
along with the associated XBUS activity directed to the I/O channel.  
 
Notes: 
1. For I/0 channels, bits 17-23 of the IOBUS are defined only during the CONTROL 
portion of the cycle. Bit 16 is as shown in the table during the CONTROL time, and is 
driven to a logic 0 by the I/0 module during the DATA portion of the IOBUS cycle 

 
2. For I/0 channels, IOBUS bit 18 is always a logic 0. It must be decoded. 

 
3. For I/0 channels, IOBUS bit 19 is a logic 0 for all non-"BROADCAST" 
operations. 

 
4. On the IOBUS, complement polarity is used so that a logical 1 is represented by a 
ground potential. 

 
5. The values shown in this table are logic true values. 

 
6. An "x" in the value for XC or XO implies that those bits are indeterminate and the 
I/0 hardware shall not decode them. 

 
7. The hardware bit-numbering scheme is used in this table (bit 0 = MSB). 

 
8. The comment "Accept data word (XO)" simply implies that the I/0 channel must 
respond with X-Acknowledge and X-Resume signals. The data is not necessarily used. 

 
9. The value (yyyy) refers to the contents of the memory location whose address is 
yyyy. 

 
10. The "Priority Number" is: 

1. The priority number of the chain program being executed in the case of a 
chain command, or 

2. The priority number of the channel whose logical number is "a" in the case of 
a command cell. 

 
11. A "command cell" refers to the locations accessed by the IOCR instruction (60, 
61, 62, and 63 hex). 

 
12. For I/0 channels, IOBUS bits 19-23 will be logical 1's for broadcast operations 
and these must be decoded before responding. It is not sufficient to simply decode bit 19 
to determine if a broadcast operation is occurring. No X-Acknowledge or X-Resume 
signals shall be generated by the I/0 for broadcast operations. 
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13. Bit 0 (MSB) of all software instructions sent to the I/0 module, which are 
executed from an input chain program, will be forced to a logic 0 value." For example: 
The FBxX (Store Status) instruction would be received by the I/0 module as 7Bxx if the 
instruction was executed out of an input chain program. 
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The second section of Appendix D describes XBUS interaction between the processor 
and I/O module in response to a particular raised event. All events and their associated 
XBUS activity are presented  
 
Notes: 
1. For I/0 channels, bits 17-23 of the IOBUS are defined only during the CONTROL 
portion of the cycle. Bit 16 is as shown in the table during the CONTROL time, and is 
driven to a logic 0 by the I/0 module during the DATA portion of the IOBUS cycle 

 
2. For I/0 channels, IOBUS bit 18 is always a logic 0. It must be decoded. 

 
3. For I/0 channels, IOBUS bit 19 is a logic 0 for all non-"BROADCAST" 
operations. 

 
4. On the IOBUS, complement polarity is used so that a logical 1 is represented by a 
ground potential. 

 
5. The values shown in this table are logic true values. 

 
6. An "x" in the value for XC or XO implies that those bits are indeterminate and the 
I/0 hardware shall not decode them. 

 
7. The hardware bit numbering scheme is used in this table (bit 0 = MSB). 

 
8. The comment "Accept data word (XO)" simply implies that the I/0 channel must 
respond with X-Acknowledge and X-Resume signals. The data is not necessarily used. 

 
9 For I/O channels, XBUS bits 20-23 contain the priority number of the channel. 

 
10. A “K” represents the priority number of the channel that generated the event. 
“K*E” represents the priority number obtained by forcing the LSB of K to a zero.  

 
11. Unless otherwise stated, all XBUS activity occurs for the channel whose event is 
being serviced. 

 
12. “BCW*” is bits 04-15 of CM-0 or CM-4 

 
13. “CM-n” is Control Memory word n. 
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APPENDIX E: VHDL SOURCE CODE 

 
Hirearchy Of Souce Code 

 

Adapter_top.vhd

Mbus_controller.vhd

Sdramcnt.vhd

Xbus_controller.vhd

evtfsm.vhd

xs_pckg.vhd

Add_select.vhd

Odd_parity.vhd
Grant_logic.vhd

X_grant_logic.vhd

Xs_pckg.vhd

Xs_pckg.vhd

Xs_pckg.vhd

Level IIILevel IILevel I
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=============================================================== 
 Memory Arbitrator <Mem_Arbitrator.vhdl> 
=============================================================== 
 
 Project:  AYK-14 VHSIC Processor Module Hardware Emulator 
 Component:  Memory Use Arbitrator 
 Description:  Sate Machine which provides a rotating access scheme to  
   provide access to the on chip memory to all users,  
   specifically the Processor, the Xbus, and the Mbus.   
 
 Author:  LT Bryan Fetter, USN 
 Advisor:  Dr. Russ Duren 
 Co-advisor:  Dr. Hersch Loomis 
 Location:  Naval Postgraduate School 
 
 Created:  30 August 2002 
 Modified:  6 November 2002 
 Simulated:   
 Target:  XCV1000E FG1156 
 Software:  Synplify Pro 7.1 
 Notes: 
 
 Disclaimer: NPS, makes no warranty for the use of this code or design. This code is 
provided  "As Is". NPS, assumes no responsibility for  any errors, which may appear in 
this code, nor does it make a commitment  to update the information contained herein. 
NPS specifically disclaims any implied warranties of fitness for a particular purpose. 
  Copyright (c) 2002 NPS 
   All rights reserved. 
=============================================================== 
 
library IEEE;  
use IEEE.std_logic_1164.all; 
 
entity mem_arbitrator is 
 
 generic( 
  DATA_WIDTH: natural := 32; 
  ADDR_WIDTH: natural := 23 
  ); 
 port ( 
  Clk: in std_logic; 
  RST: in std_logic; 
  --Signals from SDRAM Controller 
  Mem_Done: in std_logic; 

-- Memory Available signal from SDAM Ctr 
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  RD: out std_logic; 
  WR: out std_logic; 
  hAddr:  out std_logic_vector(ADDR_WIDTH-1 downto 0); 
  hData_In: out std_logic_vector(DATA_WIDTH-1 downto 0);  

--Out TO SDRAM 
  hData_Out: in std_logic_vector(DATA_WIDTH-1 downto 0);  

--In FROM SDRAM 
  --Signals from Processor 
  P_Addr_In: in std_logic_vector(ADDR_WIDTH-1 downto 0); 

-- Memory Address In 
  P_Data_In: in std_logic_vector(DATA_WIDTH-1 downto 0); 
  P_Data_Out: out std_logic_vector(DATA_WIDTH-1 downto 0); 
  P_Mem_Done: out std_logic; 
  P_RD: in std_logic; 
  P_WR: in std_logic; 
  --Signals from MBus 
  M_Addr_In: in std_logic_vector(ADDR_WIDTH-1 downto 0); 

-- Memory Address In 
  M_Data_In: in std_logic_vector(DATA_WIDTH-1 downto 0); 
  M_Data_Out: out std_logic_vector(DATA_WIDTH-1 downto 0); 
  M_Mem_Done: out std_logic; 
  M_RD: in std_logic; 
  M_WR: in std_logic; 
  --Signals from XBus 
  X_Addr_In: in std_logic_vector(ADDR_WIDTH-1 downto 0); 
  -- Memory Address In 
  X_Data_In: in std_logic_vector(DATA_WIDTH-1 downto 0); 
  X_Data_Out: out std_logic_vector(DATA_WIDTH-1 downto 0); 
  X_Mem_Done: out std_logic; 
  X_RD: in std_logic; 
  X_WR: in std_logic 
   
  ); 
 
end mem_arbitrator; 
 
architecture behavioral of mem_arbitrator is 
 
constant Addr_Z: Std_Logic_Vector(ADDR_WIDTH-1  

downto 0):="ZZZZZZZZZZZZZZZZZZZZZZZ"; 
 
type statetype is ( 
  Idle, -- Idle state when no entity is requesting Memory  
  P,   -- State when Processor has control of Memory 
  X,   -- State when Xbus has control of Memory 
  M  -- State when Mbus has control of Memory 
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); 
 
signal curr_state, next_state : statetype ; 
signal P_REQ,M_REQ,X_REQ : std_logic;  
 
begin 
 
P_REQ <= P_RD or P_WR; 
M_REQ <= M_RD or M_WR; 
X_REQ <= X_RD or X_WR; 
 
--Process to determine next state 
 
nxtStProc: 
 process  (P_REQ,M_REQ,X_REQ,curr_state,Mem_Done,P_RD,P_WR, 

M_RD,M_WR,X_RD,X_WR,next_state) 
 
begin 
 
  case curr_state is 
    when Idle => 
      if P_REQ = '1' then  --First If statements determine if any user wants memory 
        next_state <= P; 
      elsif X_REQ = '1' then 
        next_state <= X; 
      elsif M_REQ = '1' then 
        next_state <= M; 
      else 
        next_state <= Idle; 
      end if; 
       
      case next_state is   
--As soon as the highest priority user is determined from statements above, the RD or 
WR signal is sent to the SDRAM controller 

 
        when Idle =>   
          RD <= '0';   
--This is to ensure that the SDRAM controler goes to the RW state on the following clock 
          WR <= '0';   
        when P => 
          RD <= P_RD; 
          WR <= P_WR; 
        when X => 
          RD <= X_RD; 
          WR <= X_WR; 
        when M => 
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          RD <= M_RD; 
          WR <= M_WR; 
        when others => 
          null; 
        end case; 
         
    when P => 
  
      if Mem_Done = '0' then  
        --Each state remains in that state until the Mem_Done signal indicates that memory 
is available 
        RD <= P_RD;   
        WR <= P_WR; 
        next_state <= P; 
      elsif Mem_Done = '1' then  
--The next state priority is determined by the order of the if statements 
        if X_REQ = '1' then 
          next_state <= X; 
        elsif M_REQ = '1' then 
          next_state <= M; 
        else 
--If the same user is the only one that wants memory, the state must first go to the Idle 
state.This is to prevent timing issues in regrard to reasserting the Request signals. This 
may not be needed after testing with hardware 
          next_state <= Idle;  
        end if;    
      end if;   . 
       
    when M => 
     
      if Mem_Done = '0' then 
        RD <= M_RD; 
        WR <= M_WR; 
        next_state <= M; 
      elsif Mem_Done = '1' then 
        if P_REQ = '1' then 
          next_state <= P; 
        elsif X_REQ = '1' then 
          next_state <= X; 
        else 
          next_state <= Idle; 
        end if; 
      end if; 
       
    when X => 
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      if Mem_Done = '0' then 
        RD <= X_RD; 
        WR <= X_WR; 
        next_state <= X; 
      elsif Mem_Done = '1' then 
        if M_REQ = '1' then 
          next_state <= M; 
        elsif P_REQ = '1' then 
          next_state <= P; 
        else 
          next_state <= Idle; 
        end if; 
      end if; 
 
    when others => 
      null; 
       
    end case;   
 
end process nxtStProc; 
 
--This process determines the output signals based on the current state and input signals 
 
outConProc: 
process(curr_state,next_state,P_RD,P_WR,M_RD,M_WR,X_RD,X_WR,X_Addr_In, 

P_Addr_In,M_Data_In,hData_Out,P_Data_In,X_Data_In,M_Addr_In, 
Mem_Done) 

 
begin 
 
  case curr_state is  
 
    when Idle => 
 --In Idle, all the memory done signals are set to '0' to prevent misreading of 
invalid memory signals 
 X_Mem_Done <= '0'; 
 P_Mem_Done <= '0';  
 M_Mem_Done <= '0';  
 --hAddr <= ADDR_Z; --Connect Address bus to high Z  
 
    when P => 
 hAddr <= P_Addr_In;  --Connect P lines to Input/Output Lines 
 P_Data_Out <= hData_Out; 
 hData_In <= P_Data_In; 
 P_Mem_Done <= Mem_Done; 
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    when X => 
 hAddr <= X_Addr_In;  --Connect X lines to Input/Output Lines 
 X_Data_Out <= hData_Out; 
 hData_In <= X_Data_In; 
 X_Mem_Done <= Mem_Done; 
  
    when M => 
 hAddr <= M_Addr_In;  --Connect M lines to Input/Output Lines 
 M_Data_Out <= hData_Out; 
 hData_In <= M_Data_In; 
 M_Mem_Done <= Mem_Done; 
  
    when others => 
 hAddr <= ADDR_Z;   --Connect Address bus to high Z 
  
end case; 
 
end process ; 
 
--Process to go from state to state (syncronize outputs) 
 
state_to_state: process (CLK,RST)  

--Procedes to next state when Memory Operation is done 
begin 
 if  (RST = '1') then 
  curr_state <= Idle; 
 elsif   (CLK'EVENT and CLK='1' ) then --and Mem_Done = '1') then 
  curr_state <= next_state; 
 end if; 
  
 
end process; 
 
 
end behavioral; 
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=============================================================== 
  Address Selector <Add_Select.vhd> 
=============================================================== 
 
Project:  AYK-14 VHSIC Processor Module Hardware Emulator 
Component:  Address Selector for MBUS 
Description:  Address multiplexor that provides the Desire signals to 
    the MBUS ARbitrator for requests for memory from the 
    Processor that are out of range of the On Board Memory. 
    It defaults values to High Z when the data requested is 
    available on board. 
 
Author:  LT Bryan Fetter, USN 
Advisor:  Dr. Russ Duren 
Co-advisor:  Dr. Hersch Loomis 
Location:  Naval Postgraduate School 
 
Created:  25 October 2002 
Modified:  7 November 2002 
Simulated:   
Target:   XCV1000E FG1156 
Software:  Foundation 4.2i 
Notes: 
 
Disclaimer: NPS, makes no warranty for the use of this code or design. This code is 
provided  "As Is". NPS, assumes no responsibility for  any errors, which may appear in 
this code, nor does it make a commitment  to update the information contained herein. 
NPS specifically disclaims any implied warranties of fitness for a particular purpose. 
  Copyright (c) 2002 NPS 
   All rights reserved. 
=============================================================== 
 
 
 
library IEEE; 
use IEEE.std_logic_1164.all; 
use IEEE.numeric_std.all; 
 
package Add_Select is 
 
component Add_Select  
    port ( 
        --Processor Side 
        Add_In_Proc: in unsigned (22 downto 0); 
        Data_WR_Proc: in unsigned (31 downto 0); 
        Data_RD_Proc: out unsigned (31 downto 0); 
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        RD_Req_in_Proc: in STD_LOGIC; 
        WR_Req_in_Proc: in STD_LOGIC; 
        Mem_req_Done_Proc: out STD_LOGIC; 
      --Mem_Writedoub_request: in STD_LOGIC;  
      --IR_Bus: in unsigned ( 31 downto 0); 
      --Protect: in unsigned (2 downto 0); 
       
        --MBUS Side 
        Data_RD_MBUS: in unsigned (31 downto 0); 
        Data_WR_MBUS: out unsigned (31 downto 0); 
        Add_out_MBUS: out unsigned (22 downto 0); 
        RD_Req_out_MBUS: out STD_LOGIC; 
        WR_Req_out_MBUS: out STD_LOGIC; 
        Proc_Desire_L_MBUS: out STD_LOGIC; 
        Mem_req_Done_MBUS: in STD_LOGIC; 
         
        --OBM Side 
        Add_In_OBM: out unsigned (22 downto 0); 
        Data_RD_OBM: in unsigned (31 downto 0); 
        Data_WR_OBM: out unsigned (31 downto 0); 
        RD_Req_OBM: out STD_LOGIC; 
        WR_Req_OBM: out STD_LOGIC; 
        Mem_req_Done_OBM: in STD_LOGIC 
      --Mem_Writedoub_request_OBM: out STD_LOGIC;   
      --IR_Bus_OBM: out unsigned ( 31 downto 0); 
      --Protect_OBM: out unsigned (2 downto 0); 
    ); 
end component; 
 
end package Add_Select; 
 
 
library IEEE; 
use IEEE.std_logic_1164.all; 
use IEEE.numeric_std.all; 
 
entity Add_Select is 
    port ( 
        --Processor Side 
        Add_In_Proc: in unsigned (22 downto 0); 
        Data_WR_Proc: in unsigned (31 downto 0); 
        Data_RD_Proc: out unsigned (31 downto 0); 
        RD_Req_in_Proc: in STD_LOGIC; 
        WR_Req_in_Proc: in STD_LOGIC; 
        Mem_req_Done_Proc: out STD_LOGIC; 
      --Mem_Writedoub_request: in STD_LOGIC;   
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      --IR_Bus: in unsigned ( 31 downto 0); 
      --Protect: in unsigned (2 downto 0); 
       
        --MBUS Side 
        Data_RD_MBUS: in unsigned (31 downto 0); 
        Data_WR_MBUS: out unsigned (31 downto 0); 
        Add_out_MBUS: out unsigned (22 downto 0); 
        RD_Req_out_MBUS: out STD_LOGIC; 
        WR_Req_out_MBUS: out STD_LOGIC; 
        Proc_Desire_L_MBUS: out STD_LOGIC; 
        Mem_req_Done_MBUS: in STD_LOGIC; 
         
        --OBM Side 
        Add_In_OBM: out unsigned (22 downto 0); 
        Data_RD_OBM: in unsigned (31 downto 0); 
        Data_WR_OBM: out unsigned (31 downto 0); 
        RD_Req_OBM: out STD_LOGIC; 
        WR_Req_OBM: out STD_LOGIC; 
        Mem_req_Done_OBM: in STD_LOGIC 
      --Mem_Writedoub_request_OBM: out STD_LOGIC;   
      --IR_Bus_OBM: out unsigned ( 31 downto 0); 
      ); 
end Add_Select; 
 
architecture Add_Select_arch of Add_Select is 
 
constant Mem_Blk_1_L : natural := 1048576 ;  
--Lower bound of VPM Master OBM (100000H) 
constant Mem_Blk_1_H : natural := 2097151 ;  
--Upper bound of VPM Master OBM (1FFFFFH) 
constant Mem_Blk_2_L : natural := 2097152 ;  
--Lower bound of VPM Slave1 OBM (200000H) 
constant Mem_Blk_2_H : natural := 3145727 ;  
--Upper bound of VPM Slave1 OBM (2FFFFFH) 
 
signal Address : unsigned (22 downto 0); 
--signal Data_RD : unsigned (31 downto 0); 
signal Data_RD_M : unsigned (31 downto 0); 
signal Data_RD_O : unsigned (31 downto 0); 
signal Data_WR: unsigned (31 downto 0); 
signal RD_Req : std_logic; 
signal WR_Req : std_logic; 
signal Mem_req_Done : std_logic; 
 
begin 
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Address <= Add_In_Proc; 
--Data_RD_Proc <= Data_RD; 
Data_RD_M <= Data_RD_MBUS; 
Data_RD_O <= Data_RD_OBM; 
Data_WR <= Data_WR_Proc; 
RD_Req <= RD_Req_In_Proc; 
WR_Req <= WR_Req_In_Proc; 
Mem_req_Done_Proc <= Mem_req_Done; 
 
   
process 
(Address,Data_WR,RD_Req,WR_Req,Data_RD_MBUS,Mem_req_Done_MBUS, 
  Data_RD_OBM,Mem_req_Done_OBM,Data_RD_M,Data_RD_O) 
   
  begin 
    --If address is in OBM range, conect signals to OBM 
    --and put MBUS signals to High Z 
    if (Address >= to_unsigned(Mem_Blk_1_L,23)  
        and Address <= to_unsigned(Mem_Blk_1_H,23)) then 
      --Connect Signal to OBM 
      Add_In_OBM <= Address; 
      Data_WR_OBM <= Data_WR; 
      Data_RD_Proc <= Data_RD_O; 
      RD_Req_OBM <= RD_Req; 
      WR_Req_OBM <= WR_Req; 
      Mem_req_Done <= Mem_req_Done_OBM; 
      --High Z signals to MBUS 
      Add_out_MBUS <= (others => 'Z'); 
      Data_WR_MBUS <= (others => 'Z'); 
      RD_Req_out_MBUS <= '0'; 
      WR_Req_out_MBUS <= '0'; 
      Proc_Desire_L_MBUS <= '1'; 
       
     
    --If address is out of OBM range, connect signals to MBUS 
    --and put OBM signals High Z   
    elsif (Address < to_unsigned(Mem_Blk_1_L,23)  
       or (Address >= to_unsigned(Mem_Blk_2_L,23)  
       and Address <= to_unsigned(Mem_Blk_2_H,23))) then 
      --Connect signals to MBUS 
      Add_out_MBUS <= Address; 
      Data_WR_MBUS <= Data_WR; 
      Data_RD_Proc <= Data_RD_M; 
      RD_Req_out_MBUS <= RD_Req; 
      WR_Req_out_MBUS <= WR_Req; 
      Mem_req_Done <= Mem_req_Done_MBUS; 

111 



      Proc_Desire_L_MBUS <= (RD_Req NOR WR_Req); 
      --High Z signals to OBM 
      Add_In_OBM <= (others => 'Z'); 
      Data_WR_OBM <= (others => 'Z'); 
      RD_Req_OBM <= '0'; 
      WR_Req_OBM <= '0'; 
       
       
    else 
      Data_RD_Proc <= (others => 'Z'); 
      Add_out_MBUS <= (others => 'Z'); 
      Data_WR_MBUS <= (others => 'Z'); 
      RD_Req_out_MBUS <= '0'; 
      WR_Req_out_MBUS <= '0'; 
      Proc_Desire_L_MBUS <= '1'; 
      Add_In_OBM <= (others => 'Z'); 
      Data_WR_OBM <= (others => 'Z'); 
      RD_Req_OBM <= '0'; 
      WR_Req_OBM <= '0'; 
      Mem_req_Done <= '0'; 
       
    end if; 
end process; 
       
end Add_Select_arch; 
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=============================================================== 
  Event Bus Controller (State-Machine) <evt_fsm.vhdl> 
=============================================================== 
 
  Project:  AYK-14 VHSIC Processor Module Hardware Emulator 
  Component:  Event Bus Interface Controller 
  Description: State Machine that provides the interrogation of all polled Events 

via the EBUS using control signals on the EMON Bus. Provides 
capability to lock-out Class III interrupts via monitoring of SR1- 
Bit3.Contains Timing loop that provides 9 clock cycles for each 
state. This can be changed by calculating number of clock-cycles 
required to permit a cycle time of 444 nsec. 

 
 
  Author:  LT Bryan Fetter, USN 
  Advisor:  Dr. Russ Duren 
  Co-advisor:  Dr. Hersch Loomis 
  Location:  Naval Postgraduate School 
 
  Created:  25 October 2002 
  Modified:  28 October 2002 
  Simulated:   
  Target:  XCV1000E FG1156 
  Software:  Foundation 4.2i 
  Notes: 
 
Disclaimer: NPS, makes no warranty for the use of this code or design. This code is 
provided  "As Is". NPS, assumes no responsibility for  any errors, which may appear in 
this code, nor does it make a commitment  to update the information contained herein. 
NPS specifically disclaims any implied warranties of fitness for a particular purpose. 
  Copyright (c) 2002 NPS 
   All rights reserved. 
=============================================================== 
 
 
 
library IEEE; 
use IEEE.std_logic_1164.all; 
use IEEE.numeric_std.all; 
use WORK.common.all; 
 
entity EVT_FSM is 
    port ( 
        EBUS: in STD_LOGIC_VECTOR (0 to 7); -- Event Bus Input 
        CLK: in STD_LOGIC;   -- Clock 
        RST: in STD_LOGIC;   -- Reset 
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        SR1_BIT: in STD_LOGIC;   -- Status Register 1 Bit 3 
        EMON: out STD_LOGIC_VECTOR (0 to 7); -- Event Monitor Bus 
        E_VCTR: out STD_LOGIC_VECTOR (0 to 8) -- Event Vector (modified)  
            ); 
end EVT_FSM; 
 
architecture EVT_FSM_arch of EVT_FSM is 
 
type evt_FSM_type is (Idle,Cls_Req, Grp_Req, Disc_Req);  
 
constant Clock_Freq:  natural := 40_000_000; --INPUT CLOCK FREQ in Hz   
--***CHANGE THIS BASED ON OPERATING FREQ*** 
constant Design_Freq: natural := 40_000_000; --Design Freq in Hz  
constant Max_Cycles: natural := 9 * (Clock_Freq / Design_Freq);  
 
 
signal curr_State, next_State: evt_FSM_type;  
 
signal clk_count: unsigned(log2(Max_Cycles)-1 downto 0);   
-- Used to count clock cycles 
signal termCtrl: std_logic; 
-- Used in counting process 
signal Pri_Cls, Pri_Disc, Pri_Grp: std_logic_vector (2 downto 0);  
--Used to generate Event Vector 
 
 
begin 
  -- Process to generate Next State 
   
  nxt_St_Proc: process (curr_State, EBUS, SR1_BIT,clk_count) 
   
  begin 
   
  case curr_State is 
   when Idle => 
     if (EBUS = "00000000") then --No Events Active 
       next_State <= Idle; 
     else 
      next_State <= Cls_Req;  
     end if;         
   when Cls_Req => 
     if (EBUS = "00000000") then --No Events Active 
       next_State <= Idle; 
     --Non I/O Class 0  
     elsif ((std_match(EBUS,"1-------"))  
        and clk_count = TO_UNSIGNED(Max_Cycles-1,clk_count'length)) then 
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         next_State <= Disc_Req; 
     --I/O Class 1 
     elsif ((std_match(EBUS,"01------"))  
        and clk_count = TO_UNSIGNED(Max_Cycles-1,clk_count'length)) then 
         next_State <= Grp_Req; 
     --I/O Class 2 
     elsif ((std_match(EBUS,"001-----"))  
        and clk_count = TO_UNSIGNED(Max_Cycles-1,clk_count'length)) then   
         next_State <= Grp_Req; 
     --Non I/O Class 3 
     elsif ((std_match(EBUS,"0001----"))  
        and clk_count = TO_UNSIGNED(Max_Cycles-1,clk_count'length)) then   
             next_State <= Disc_Req; 
   --I/O Class 4 
     elsif ((std_match(EBUS,"00001---"))  
        and clk_count = TO_UNSIGNED(Max_Cycles-1,clk_count'length)) then   
         next_State <= Grp_Req; 
     --Non I/O Class 5 
     elsif ((std_match(EBUS,"000001--"))  
        and clk_count = TO_UNSIGNED(Max_Cycles-1,clk_count'length)) then   
       next_State <= Disc_Req; 
     --Non I/O Class 6 
     elsif ((std_match(EBUS,"0000001-"))  
        and clk_count = TO_UNSIGNED(Max_Cycles-1,clk_count'length)) then   
       next_State <= Disc_Req; 
     --I/O Class 7 
     elsif ((std_match(EBUS,"00000001"))  
        and clk_count = TO_UNSIGNED(Max_Cycles-1,clk_count'length)  
        and (SR1_BIT = '1')) then   
       next_State <= Grp_Req; 
     else  
       next_State <= Cls_Req; 
     end if; 
      
   when Grp_Req => 
   -- Wait in this state for Max clocks 
     if (clk_count = TO_UNSIGNED(Max_Cycles-1,clk_count'length)) then  
       next_State <= Disc_Req; 
     else 
       next_State <= Grp_Req; 
     end if; 
      
   when Disc_Req => 
   -- Wait in this state for Max clocks 
     if (clk_count = TO_UNSIGNED(Max_Cycles-1,clk_count'length)) then  
       next_State <= Cls_req; 
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     else 
       next_State <= Disc_Req; 
     end if; 
      
   when others => 
     null; 
      
  end case;   
     
  end process nxt_St_Proc; 
  
 --Current State Process - Clock triggered to make current state = next state 
  
  curStProc: process (CLK, RST)  
  begin 
    if (RST = '1') then  
      curr_State <= Idle; 
    elsif (CLK'event and CLK = '1') then 
      curr_State <= next_State; 
    end if; 
  end process curStProc; 
  
 -- Clock Counter - Provides 9 clock-cycles for each State when an event is active 
   
  clock_counter: process (CLK, RST)  
  begin 
    case curr_State is 
      when Idle => 
        clk_count <= TO_UNSIGNED(0,clk_count'length); 
        termCtrl <= '1'; 
      when others => 
           
          if (CLK'event and CLK = '1') then 
             
            if (termCtrl = '1') then 
           clk_count <= TO_UNSIGNED(0,clk_count'length); 
         else 
           clk_count <= clk_count + 1; 
         end if; 
           
         if (clk_count = TO_UNSIGNED(Max_Cycles-1,clk_count'length)) then   
           termCtrl <= '1'; 
         else  
           termCtrl <= '0'; 
         end if; 
          

116 



          end if; 
      end case; 
  end process clock_counter; 
       
   
 --Output Conditioning Logic 
  
  outConProc: process (curr_State, EBUS, Pri_Cls, Pri_Grp, Pri_Disc, SR1_BIT)  
  begin 
    case curr_State is 
      when Idle => 
        EMON <= "01000000"; 
        --if (EBUS = "00000000") then 
        --    Pri_Cls <= "000"; 
        --    Pri_Grp <= "000"; 
        --    Pri_Disc <= "000"; 
        --end if; 
                
      when Cls_Req => 
        if (std_match(EBUS,"1-------")) then     --Non I/O Class 0 
       Pri_Cls <= "000"; 
       Pri_Grp <= "000"; 
   elsif (std_match(EBUS,"01------")) then  --I/O Class 1 
       Pri_Cls <= "001";        
   elsif (std_match(EBUS,"001-----")) then  --I/O Class 2 
       Pri_Cls <= "010"; 
   elsif (std_match(EBUS,"0001----")) then  --Non I/O Class 3 
       Pri_Cls <= "011"; 
       Pri_Grp <= "000"; 
   elsif (std_match(EBUS,"00001---")) then  --I/O Class 4 
       Pri_Cls <= "100"; 
   elsif (std_match(EBUS,"000001--")) then  --Non I/O Class 5 
       Pri_Cls <= "101"; 
       Pri_Grp <= "000"; 
   elsif (std_match(EBUS,"0000001-")) then  --Non I/O Class 6 
       Pri_Cls <= "110"; 
       Pri_Grp <= "000"; 
   elsif ((std_match(EBUS,"00000001"))  
    and (SR1_BIT = '1')) then    --I/O Class 7 
       Pri_Cls <= "111"; 
   else  
       Pri_Cls <= "000"; 
   end if; 
        EMON <= "01000000"; 
      when Grp_Req => 
        if (std_match(EBUS,"1-------")) then     --Group 0/1 
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       Pri_Grp <= "000"; 
   elsif (std_match(EBUS,"01------")) then  --Group 2/3 
       Pri_Grp <= "001"; 
   elsif (std_match(EBUS,"001-----")) then  --Group 4/5 
       Pri_Grp <= "010"; 
   elsif (std_match(EBUS,"0001----")) then  --Group 6/7 
       Pri_Grp <= "011"; 
   elsif (std_match(EBUS,"00001---")) then  --Group 8/9 
       Pri_Grp <= "100"; 
   elsif (std_match(EBUS,"000001--")) then  --Group A/B 
       Pri_Grp <= "101"; 
   elsif (std_match(EBUS,"0000001-")) then  --Group C/D 
       Pri_Grp <= "110"; 
   elsif (std_match(EBUS,"00000001")) then  --Group E/F 
       Pri_Grp <= "111"; 
   else  
       Pri_Grp <= "000"; 
   end if; 
   EMON <= "10" & Pri_Cls & "000"; 
      when Disc_Req => 
       if (std_match(EBUS,"1-------")) then     --Discrete 1 or Even 1 
       Pri_Disc <= "000"; 
   elsif (std_match(EBUS,"01------")) then  --Discrete 2 or Even 2 
       Pri_Disc <= "001"; 
   elsif (std_match(EBUS,"001-----")) then  --Discrete 3 or Even 3 
       Pri_Disc <= "010"; 
   elsif (std_match(EBUS,"0001----")) then  --Discrete 4 or Even 4 
       Pri_Disc <= "011"; 
   elsif (std_match(EBUS,"00001---")) then  --Discrete 5 or Odd 1 
       Pri_Disc <= "100"; 
   elsif (std_match(EBUS,"000001--")) then  --Discrete 6 or Odd 2 
       Pri_Disc <= "101"; 
   elsif (std_match(EBUS,"0000001-")) then  --Discrete 7 or Odd 3 
       Pri_Disc <= "110"; 
   elsif (std_match(EBUS,"00000001")) then  --Discrete 8 or Odd 4 
       Pri_Disc <= "111"; 
   else  
       Pri_Disc <= "000"; 
   end if; 
   EMON <= "11" & Pri_Cls & Pri_Grp; 
      when others => 
   null; 
      
    end case; 
       
  end process outConProc;  
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  E_VCTR <= Pri_Cls & Pri_Grp & Pri_Disc;  
         
  
end EVT_FSM_arch; 
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=============================================================== 
-- SDRAM Controller <sdramcnt.vhdl> 
=============================================================== 
 
-- Project:  AYK-14 VHSIC Processor Module Hardware Emulator 
-- Component:  SDRAM Controller 
-- Description: State Machine that acts as the interface to the SDRAM and 

provides all neccesary control and upkeep functions required for 
SDRAM usage. 

 
 
-- Author:  D. Van Den Bout 
-- Modified for use in 
-- this thesis by: LT Bryan Fetter 
-- Advisor:  Dr. Russ Duren 
-- Co-advisor:  Dr. Hersch Loomis 
-- Location:  Naval Postgraduate School 
 
-- Modified:  27 November 2002 
-- Simulated:  30 October 20020 
-- Target:  XCV1000E FG1156 
-- Software:  Foundation 4.2i 
-- Notes: 
 
Disclaimer: NPS, makes no warranty for the use of this code or design. This code is 
provided  "As Is". NPS, assumes no responsibility for  any errors, which may appear in 
this code, nor does it make a commitment  to update the information contained herein. 
NPS specifically disclaims any implied warranties of fitness for a particular purpose. 
  Copyright (c) 2002 NPS 
   All rights reserved. 
=============================================================== 
 
library IEEE; 
use IEEE.std_logic_1164.all; 
use IEEE.numeric_std.all; 
--use unisim.vcomponents.all; 
use WORK.common.all; 
use WORK.xilinx.all; 
 
 
 
 
package sdram is 
 
component sdramCntl 
 generic( 
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  FREQ: natural := 40_000;-- operating frequency in KHz 
  DATA_WIDTH: natural := 16;-- host & SDRAM data width 
  NROWS: natural := 4096; -- number of rows in SDRAM array 
  NCOLS: natural := 512; -- number of columns in SDRAM array 
  HADDR_WIDTH: natural := 23;-- host-side address width 
  SADDR_WIDTH: natural := 12 -- SDRAM-side address width 
 ); 
 port( 
  clkin: in std_logic; -- master clock 
 
  -- host side 
  bufclk: out std_logic;  -- buffered master clock 
  clk0:  out std_logic; -- host clock sync'ed to master clock 
  clk2x: out std_logic;  -- double-speed host clock 
  lock:  out std_logic; -- indicate when clock circuitry is  
      -- locked to master clock 
  rst:  in std_logic;  -- reset 
  rd:   in std_logic; -- read data 
  wr:   in std_logic; -- write data 
  done:  out std_logic;  -- read/write op done 
  hAddr: in unsigned(HADDR_WIDTH-1 downto 0);  

-- address from host 
  hDIn:  in unsigned(DATA_WIDTH-1 downto 0); 

-- data from host 
  hDOut: out unsigned(DATA_WIDTH-1 downto 0);  

-- data to host 
  sdramCntl_state: out std_logic_vector(3 downto 0);  
  -- SDRAM side 
  sclkfb: in std_logic; -- clock from SDRAM after PCB delays 
  sclk:  out std_logic; -- SDRAM clock sync'ed to master clock 
  sclk_tst: out std_logic; 
  cke:  out std_logic;-- clock-enable to SDRAM 
  cs_n:  out std_logic;-- chip-select to SDRAM 
  ras_n: out std_logic;   -- command input to SDRAM 
  cas_n: out std_logic;   -- command input to SDRAM 
  we_n:  out std_logic;-- command input to SDRAM 
  ba:   out unsigned(1 downto 0);  
  -- SDRAM bank address bits 
  sAddr: out unsigned(SADDR_WIDTH-1 downto 0); 

-- SDRAM row/column address 
  sData: inout unsigned(DATA_WIDTH-1 downto 0);   

-- SDRAM in/out databus 
  dqmh:  out std_logic;   -- high databits I/O mask 
  dqml:  out std_logic     -- low databits I/O mask 
 ); 
end component; 

121 



 
end package sdram; 
 
library IEEE;--,unisim; 
use IEEE.std_logic_1164.all; 
use IEEE.numeric_std.all; 
--use unisim.vcomponents.all; 
use WORK.common.all; 
use WORK.xilinx.all; 
 
entity sdramCntl is 
 generic( 
  FREQ: natural := 40_000;  -- operating frequency in KHz 
  DATA_WIDTH: natural := 16; -- host & SDRAM data width 
  NROWS: natural := 4096;  -- number of rows in SDRAM array 
  NCOLS: natural := 512;  -- number of columns in SDRAM 
array 
  HADDR_WIDTH: natural := 23; -- host-side address width 
  SADDR_WIDTH: natural := 12 -- SDRAM-side address width 
 ); 
 port( 
  clkin: in std_logic; -- master clock 
 
  -- host side 
  bufclk: out std_logic;  -- buffered master clock 
  clk0:  out std_logic; -- host clock sync'ed to master clock 
  clk2x: out std_logic;  -- double-speed host clock 
  lock:  out std_logic; -- indicate when clock circuitry  
      -- is locked to master clock 
  rst:  in std_logic;   -- reset 
  rd:   in std_logic;-- read data 
  wr:   in std_logic;-- write data 
  done:  out std_logic;   -- read/write op done 
  hAddr: in unsigned(HADDR_WIDTH-1 downto 0); 

-- address from host 
  hDIn:  in unsigned(DATA_WIDTH-1 downto 0); 

-- data from host 
  hDOut: out unsigned(DATA_WIDTH-1 downto 0); 

-- data to host 
  sdramCntl_state: out std_logic_vector(3 downto 0);   
 
  -- SDRAM side 
  sclkfb: in std_logic; -- clock from SDRAM after PCB delays 
  sclk:  out std_logic; -- SDRAM clock sync'ed to master clock 
  sclk_tst: out std_logic; 
  cke:  out std_logic;-- clock-enable to SDRAM 
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  cs_n:  out std_logic;-- chip-select to SDRAM 
  ras_n: out std_logic;   -- command input to SDRAM 
  cas_n: out std_logic;   -- command input to SDRAM 
  we_n:  out std_logic;-- command input to SDRAM 
  ba:   out unsigned(1 downto 0);  
  -- SDRAM bank address bits 
  sAddr: out unsigned(SADDR_WIDTH-1 downto 0); 

-- SDRAM row/column address 
  sData: inout unsigned(DATA_WIDTH-1 downto 0);   

-- SDRAM in/out databus 
  dqmh:  out std_logic;   -- high databits I/O mask 
  dqml:  out std_logic   -- low databits I/O mask 
 ); 
end sdramCntl; 
 
 
 
architecture arch of sdramCntl is 
 
 -- constants 
 constant ColCmdPos: natural := 10; 

-- position of command bit in SDRAM column address 
 
 constant Tinit: natural := 100; -- min initialization interval (us) 
 constant Tras: natural := 44; -- min interval between active  

to precharge commands (ns) 
 constant Trc:  natural := 66;  -- min interval between active  

to active commands (ns) 
 constant Trcd: natural := 20;       -- min interval between active  

         and R/W commands (ns) 
 constant Tref: natural := 64_000_000;-- maximum refresh interval (ns) 
 constant Trfc: natural := 66;       -- duration of refresh operation (ns) 
 constant Trp:  natural := 20;-- min precharge command duration (ns) 
 constant Twr:  natural := 15;-- write recovery time (ns) 
 constant Ccas: natural := 3;         -- CAS latency (cycles) 
 constant Cmrd: natural := 3;       -- mode register setup time (cycles) 
 constant RfshCycles: natural := 8;    -- number of refresh cycles needed  

  to init RAM 
 
 constant ROW_LEN:   natural := log2(NROWS);  
 -- number of row address bits 
 constant COL_LEN:   natural := log2(NCOLS);  
 -- number of column address bits 
 constant NORM:    natural := 1_000_000;   
 -- normalize ns * KHz 
 constant INIT_CYCLES: natural := 1 + ((Tinit * FREQ) / 1000);  

123 



 -- SDRMA power-on initialization interval 
 constant RAS_CYCLES: natural := 1 + ((Tras * FREQ) / NORM);  
 -- active-to-precharge interval 
 constant RC_CYCLES:  natural := 1 + ((Trc * FREQ) / NORM);  
 -- active-to-active interval 
 constant RCD_CYCLES: natural := 1 + ((Trcd * FREQ) / NORM);  
 -- active-to-R/W interval 
 constant REF_CYCLES: natural := 1 + (((Tref/NROWS) * FREQ) / NORM);  
 -- interval between row refreshes 
 constant RFC_CYCLES: natural := 1 + ((Trfc * FREQ) / NORM);  
 -- refresh operation interval 
 constant RP_CYCLES:  natural := 1 + ((Trp * FREQ) / NORM);  
 -- precharge operation interval 
 constant WR_CYCLES:  natural := 1 + ((Twr * FREQ) / NORM);  
 -- write recovery time 
  
 -- states of the SDRAM controller state machine 
 type cntlState is ( 
  INITWAIT,   -- initialization –  

waiting for power-on initialization to complete 
  INITPCHG,   -- initialization - doing precharge of banks 
  INITSETMODE,-- initialization - set SDRAM mode 
  INITRFSH,   -- initialization - do refreshes 
  REFRESH,    -- refresh a row of the SDRAM 
  RW,     -- wait for read/write operations to SDRAM 
  RDDONE,     -- indicate that the SDRAM read is done 
  WRDONE,     -- indicate that the SDRAM write is done 
  ACTIVATE    -- open a row of the SDRAM for reading/writing 
 ); 
 signal state_r, state_next: cntlState; -- state register and next state 
 
 constant AUTO_PCHG_ON: std_logic := '1';  
 -- set sAddr(10) to this value to auto-precharge the bank 
 constant AUTO_PCHG_OFF: std_logic := '0';  
 -- set sAddr(10) to this value to disable auto-precharge 
 constant ALL_BANKS:  std_logic := '1';   
 -- set sAddr(10) to this value to select all banks 
 constant ACTIVE_BANK: std_logic := '0';   
 -- set sAddr(10) to this value to select only the active bank 
 signal bank: unsigned(ba'range); 
 signal row: unsigned(ROW_LEN - 1 downto 0); 
 signal col: unsigned(COL_LEN - 1 downto 0); 
 signal col_tmp: unsigned(sAddr'high-1 downto sAddr'low); 
 signal changeRow: std_logic; 
 signal dirOut: std_logic; -- high when driving data to SDRAM 
  

124 



 -- registers 
 signal activeBank_r, activeBank_next: unsigned(bank'range);  
 -- currently active SDRAM bank 
 signal activeRow_r, activeRow_next: unsigned(row'range);   
 -- currently active SDRAM row 
 signal inactiveFlag_r, inactiveFlag_next: std_logic;  
 -- 1 when all SDRAM rows are inactive 
 signal doRfshFlag_r, doRfshFlag_next: std_logic;  
 -- 1 when a row refresh operation is required 
 signal wrFlag_r, wrFlag_next: std_logic;      
 -- 1 when writing data to SDRAM 
 signal rdFlag_r, rdFlag_next: std_logic;      
 -- 1 when reading data from SDRAM 
 signal rfshCntr_r, rfshCntr_next: unsigned(log2(RfshCycles+1)-1 downto 0);  
 -- counts initialization refreshes 
 
 -- timer registers that count down times for various SDRAM operations 
 signal timer_r, timer_next: unsigned(log2(INIT_CYCLES+1)-1 downto 0);  
 -- current SDRAM op time 
 signal rasTimer_r, rasTimer_next: unsigned(log2(RAS_CYCLES+1)-1  

       downto 0);  
 -- active-to-precharge time 
 signal wrTimer_r, wrTimer_next: unsigned(log2(WR_CYCLES+1)-1 downto 0);  
 -- write-to-precharge time 
 signal refTimer_r, refTimer_next: unsigned(log2(REF_CYCLES+1)-1 downto 0);  
 -- time between row refreshes 
 
 -- SDRAM commands 
 subtype sdramCmd is unsigned(5 downto 0); 
 -- cmd = (cs_n,ras_n,cas_n,we_n,dqmh,dqml) 
 constant NOP_CMD:   sdramCmd := "011100"; 
 constant ACTIVE_CMD:  sdramCmd := "001100"; 
 constant READ_CMD:  sdramCmd := "010100"; 
 constant WRITE_CMD:  sdramCmd := "010000"; 
 constant PCHG_CMD:  sdramCmd := "001011"; 
 constant MODE_CMD:  sdramCmd := "000011"; 
 constant RFSH_CMD:  sdramCmd := "000111"; 
 signal cmd: sdramCmd; 
  
 -- SDRAM mode register 
 subtype sdramMode is unsigned(11 downto 0); 
 constant MODE: sdramMode := "00" & "0" & "00" & "011" & "0" & "000"; 
 
 -- clock DLL signals 
 signal logic0: std_logic; 
 -- signals for internal logic clock DLL 
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 signal  bufclkin, dllint_clk0, dllint_clk2x, bufdllint_clk0,  
  bufdllint_clk2x, lockint: std_logic; 
 -- signals for external logic clock DLL 
 signal bufdllext_clk0, dllext_clk0, lockext: std_logic; 
 signal clk: std_logic; -- clock for SDRAM controller logic 
  
begin 
 
 logic0 <= '0'; 
  
 -- master clock must come from a dedicated clock pin 
 clkpad: IBUFG port map (I=>clkin, O=>bufclkin); 
 bufclk <= bufclkin; 
 
 -- generate an internal clock sync'ed to the master clock 
 dllint: CLKDLL port map( 
  CLKIN=>bufclkin, CLKFB=>bufdllint_clk0, CLK0=>dllint_clk0, 
  RST=>logic0, CLK90=>open, CLK180=>open, CLK270=>open, 
  CLK2X=>dllint_clk2x, CLKDV=>open, LOCKED=>lockint 
 ); 
 -- sync'ed single and double-speed clocks for use by internal logic 
 clkg: BUFG port map (I=>dllint_clk0, O=>bufdllint_clk0); 
 clkg2x: BUFG port map(I=>dllint_clk2x, O=>bufdllint_clk2x); 
 clk <= bufdllint_clk0;  -- SDRAM controller logic clock 
 clk0 <= bufdllint_clk0;  -- clock to other FPGA logic 
 clk2x <= bufdllint_clk2x; -- doubled clock to other FPGA logic; 
 lock <= lockint and lockext; -- indicate lock status of the DLLs 
  
 -- generate an external SDRAM clock sync'ed to the master clock 
-- clkfbpad : IBUFG  port map (I=>sclkfb, O=>bufsclkfb);  -- SDRAM clock with 
PCB delays 
-- dllext: CLKDLL port map( 
--  CLKIN=>bufclkin, CLKFB=>bufsclkfb, CLK0=>dllext_clk0,  
 clkfbpad : BUFG  port map (I=>dllext_clk0, O=>bufdllext_clk0);   
 -- SDRAM clock with PCB delays 
 dllext: CLKDLL port map( 
  CLKIN=>bufclkin, CLKFB=>bufdllext_clk0, CLK0=>dllext_clk0, 
  RST=>logic0, CLK90=>open, CLK180=>open, CLK270=>open, 
  CLK2X=>open, CLKDV=>open, LOCKED=>lockext 
 ); 
 
 -- output the sync'ed SDRAM clock to the SDRAM 
 clkextpad: OBUF port map (I=>dllext_clk0, O=>sclk);  
 clkextpad_2: OBUF port map (I=>bufdllext_clk0, O=>sclk_tst); 
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 hDOut <= sData(hDOut'range); -- connect SDRAM data bus to host data bus 
 sData <= hDIn(sData'range) when dirOut='1' else (others=>'Z'); \ 
 -- connect host data bus to SDRAM data bus 
 
 combinatorial: process(rd,wr,hAddr,hDIn,state_r,bank,row,col,changeRow, 
  activeBank_r,activeRow_r,doRfshFlag_r,rdFlag_r,wrFlag_r, 
 
 rfshCntr_r,timer_r,rasTimer_r,wrTimer_r,refTimer_r,cmd,col_tmp,inactiveFlag_r
) 
 begin 
  -- attach bits in command to SDRAM control signals 
  (cs_n,ras_n,cas_n,we_n,dqmh,dqml) <= cmd; 
   
  -- get bank, row, column from host address 
  bank <= hAddr(bank'length + ROW_LEN + COL_LEN - 1  

downto ROW_LEN + COL_LEN); 
  row <= hAddr(ROW_LEN + COL_LEN - 1 downto COL_LEN); 
  col <= hAddr(COL_LEN - 1 downto 0); 
  -- extend column (if needed) until it is as large  

    as the (SDRAM address bus - 1) 
  col_tmp <= (others=>'0'); -- set it to all zeroes 
  col_tmp(col'range) <= col; -- write column into the lower bits 
 
  -- default operations 
  cke <= YES; -- enable SDRAM clock input 
  cmd <= NOP_CMD; -- set SDRAM command to no-operation 
  done <= NO; -- pending SDRAM operation is not done 
  ba <= bank; -- set SDRAM bank address bits 
  -- set SDRAM address to column with interspersed command bit 
  sAddr(ColCmdPos-1 downto 0) <= col_tmp(ColCmdPos-1 downto 0); 
  sAddr(sAddr'high downto ColCmdPos+1) <=  

col_tmp(col_tmp'high downto ColCmdPos);  
  sAddr(ColCmdPos) <= AUTO_PCHG_OFF; 

-- set command bit to disable auto-precharge 
  dirOut <= NO; 
  
  -- default register updates 
  state_next <= state_r; 
  inactiveFlag_next <= inactiveFlag_r; 
  activeBank_next <= activeBank_r; 
  activeRow_next <= activeRow_r; 
  doRfshFlag_next <= doRfshFlag_r; 
  rdFlag_next <= rdFlag_r; 
  wrFlag_next <= wrFlag_r; 
  rfshCntr_next <= rfshCntr_r; 
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  -- update timers 
  if timer_r /= TO_UNSIGNED(0,timer_r'length) then 
   timer_next <= timer_r - 1; 
  else 
   timer_next <= timer_r; 
  end if; 
   
  if rasTimer_r /= TO_UNSIGNED(0,rasTimer_r'length) then 
   rasTimer_next <= rasTimer_r - 1; 
  else 
   rasTimer_next <= rasTimer_r; 
  end if; 
   
  if wrTimer_r /= TO_UNSIGNED(0,wrTimer_r'length) then 
   wrTimer_next <= wrTimer_r - 1; 
  else 
   wrTimer_next <= wrTimer_r; 
  end if; 
   
  if refTimer_r /= TO_UNSIGNED(0,refTimer_r'length) then 
   refTimer_next <= refTimer_r - 1; 
  else 
  -- on timeout, reload the timer with the interval between row refreshes 
  -- and set the flag that indicates a refresh operation is needed. 
  refTimer_next<= 

TO_UNSIGNED(REF_CYCLES,refTimer_next'length); 
   doRfshFlag_next <= YES; 
  end if; 
 
  -- determine if another row or bank in the SDRAM is being addressed 
  if row /= activeRow_r or bank /= activeBank_r  

   or inactiveFlag_r = YES then 
   changeRow <= YES; 
  else 
   changeRow <= NO; 
  end if; 
   
  -- ***** compute next state and outputs ***** 
   
  -- SDRAM initialization    
 
  -- don't do anything if the previous operation has not completed yet. 
  -- Place this before anything else so operations in the previous state 
  -- complete before any operations in the new state are executed. 
  if timer_r /= TO_UNSIGNED(0,timer_r'length) then 
   sdramCntl_state <= "0000"; 
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  elsif state_r = INITWAIT then 
   -- initiate wait for SDRAM power-on initialization 
   timer_next 

 <= TO_UNSIGNED(INIT_CYCLES,timer_next'length);  
   -- set timer for init interval 
   state_next <= INITPCHG;  

-- precharge SDRAM after power-on initialization 
   sdramCntl_state <= "0001"; 
  elsif state_r = INITPCHG then 
   cmd <= PCHG_CMD; -- initiate precharge of the SDRAM 
   sAddr(ColCmdPos) <= ALL_BANKS; -- precharge all banks 
   timer_next <= TO_UNSIGNED(RP_CYCLES,timer_next'length);  
   -- set timer for this operation 
   -- now setup the counter for the number of refresh ops  
   -- needed during initialization 
   rfshCntr_next <=  

TO_UNSIGNED(RfshCycles,rfshCntr_next'length); 
   state_next <= INITRFSH;  

-- perform refresh ops after setting the mode 
   sdramCntl_state <= "0010"; 
  elsif state_r = INITRFSH then 
   -- refresh the SDRAM a number of times during initialization 
   if rfshCntr_r /= TO_UNSIGNED(0,rfshCntr_r'length) then 
    -- do a refresh operation if the counter is not zero yet 
    cmd <= RFSH_CMD; -- refresh command goes to SDRAM 
    timer_next <=  

          TO_UNSIGNED(RFC_CYCLES,timer_next'length);  
    -- refresh operation interval 
    rfshCntr_next <= rfshCntr_r - 1; 

-- decrement refresh operation counter 
    state_next <= INITRFSH;  
    -- return to this state while counter is non-zero 
   else 
    -- refresh op counter reaches zero,  
    -- so set the operating mode of the SDRAM 
    state_next <= INITSETMODE; 
   end if; 
   sdramCntl_state <= "0100"; 
  elsif state_r = INITSETMODE then 
   -- set the mode register in the SDRAM 
   cmd <= MODE_CMD; 

-- initiate loading of mode register in the SDRAM 
   sAddr <= MODE;  

-- output mode register bits onto the SDRAM address bits 
   timer_next <= TO_UNSIGNED(Cmrd,timer_next'length); 
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   -- set timer for this operation 
   state_next <= RW; 
   -- process read/write operations after initialization is done 
   sdramCntl_state <= "0011"; 
    
  -- refresh a row of the SDRAM when the refresh timer hits zero and  

   sets the flag 
  -- and the SDRAM is no longer being read/written. 
  -- Place this before the RW state so the host can't block refreshes by doing 
  -- continuous read/write operations. 
  elsif doRfshFlag_r = YES and wrFlag_r = NO and rdFlag_r = NO then 
   if rasTimer_r = TO_UNSIGNED(0,rasTimer_r'length)  
      and wrTimer_r = TO_UNSIGNED(0,wrTimer_r'length) then 
    doRfshFlag_next <= NO;  

-- reset the flag that initiates a refresh operation 
    cmd <= PCHG_CMD;  

-- initiate precharge of the SDRAM 
    sAddr(ColCmdPos) <= ALL_BANKS;  

-- precharge all banks 
    timer_next <=  

    TO_UNSIGNED(RP_CYCLES,timer_next'length);  
    -- set timer for this operation 
    inactiveFlag_next <= YES; 
    -- all rows are inactive after a precharge operation 
    state_next <= REFRESH;  
    -- refresh the SDRAM after the precharge 
   end if; 
   sdramCntl_state <= "0101"; 
  elsif state_r = REFRESH then 
   cmd <= RFSH_CMD;-- refresh command goes to SDRAM 
   timer_next <= 

       TO_UNSIGNED(RFC_CYCLES,timer_next'length); 
   -- refresh operation interval 
   -- after refresh is done, resume writing or reading the SDRAM 

     if in progress 
   state_next <= RW; 
   sdramCntl_state <= "0110"; 
 
  -- do nothing but wait for read or write operations 
  elsif state_r = RW then 
   if rd = YES then 
    -- the host has initiated a read operation 
    rdFlag_next <= YES;   
    -- set flag to indicate a read operation is in progress 
    -- if a different row or bank is being read,  
    -- then precharge the SDRAM and activate the new row 
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    if changeRow = YES then 
    -- wait for any row activations or writes to  
    -- finish before doing a precharge 
     if rasTimer_r 

 = TO_UNSIGNED(0,rasTimer_r'length)  
     and wrTimer_r  

= TO_UNSIGNED(0,wrTimer_r'length) then 
      cmd <= PCHG_CMD; 

-- initiate precharge of the SDRAM 
      sAddr(ColCmdPos) <= ALL_BANKS;  
      -- precharge all banks 
      timer_next <= 

TO_UNSIGNED(RP_CYCLES, 
timer_next'length); 

      -- set timer for this operation 
      inactiveFlag_next <= YES; 
      -- all rows are inactive after a  

    precharge operation 
      state_next <= ACTIVATE;  
      -- activate the new row after the  

    precharge is done 
     end if; 
    -- read from the currently active row 
    else 
     cmd <= READ_CMD; 

-- initiate a read of the SDRAM 
     timer_next <=  

     TO_UNSIGNED(Ccas,timer_next'length); 
     -- setup timer for read access 
     state_next <= RDDONE;  
     -- read the data from SDRAM after the access time 
    end if; 
    sdramCntl_state <= "0111"; 
   elsif wr = YES then 
    -- the host has initiated a write operation 
    -- if a different row or bank is being written,  
    -- then precharge the SDRAM and activate the new row 
    if changeRow = YES then 
     wrFlag_next <= YES;   
     -- set flag to indicate a write operation is in progress 
     -- wait for any row activations or writes to finish  
     -- before doing a precharge 
     if rasTimer_r = 

     TO_UNSIGNED(0,rasTimer_r'length)  
        and wrTimer_r = 

     TO_UNSIGNED(0,wrTimer_r'length) then 
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      cmd <= PCHG_CMD; 
-- initiate precharge of the SDRAM 

      sAddr(ColCmdPos) <= ALL_BANKS;  
      -- precharge all banks 
      timer_next <=  

TO_UNSIGNED(RP_CYCLES, 
     timer_next'length);  

      -- set timer for this operation 
      inactiveFlag_next <= YES;  
      -- all rows are inactive after a  

    precharge operation 
      state_next <= ACTIVATE;  
      -- activate the new row after  

    the precharge is done 
     end if; 
    -- write to the currently active row 
    else 
     cmd <= WRITE_CMD;  

-- initiate the write operation 
     dirOut <= YES; 
     -- set timer so precharge doesn't occur  
     -- too soon after write operation 
     wrTimer_next <=  

TO_UNSIGNED(WR_CYCLES, 
        wrTimer_next'length); 

     state_next <= WRDONE;  
     -- go back and wait for another read/write operation 
    end if; 
    sdramCntl_state <= "1000"; 
   else 
    null; -- no read or write operation, so do nothing 
    sdramCntl_state <= "1001"; 
   end if; 
 
  -- enter this state when the data read from the SDRAM is available 
  elsif state_r = RDDONE then 
   rdFlag_next <= NO;-- set flag to indicate the read operation is over 
   done <= YES;   -- tell the host that the data is ready 
   state_next <= RW; -- go back and do another read/write operation 
   sdramCntl_state <= "1010"; 
 
  -- enter this state when the data is written to the SDRAM 
  elsif state_r = WRDONE then 
   dirOut <= YES; 
   wrFlag_next <= NO; 

-- set flag to indicate the write operation is over 

132 



   done <= YES;   -- tell the host that the data is ready 
   state_next <= RW; -- go back and do another read/write operation 
   sdramCntl_state <= "1011"; 
 
  -- activate a row of the SDRAM 
  elsif state_r = ACTIVATE then 
   cmd <= ACTIVE_CMD; 

-- initiate the SDRAM activation operation 
   sAddr <= (others=>'0');  

-- output the address for the row that will be activated 
   sAddr(row'range) <= row; 
   activeBank_next <= bank;-- remember the active SDRAM row 
   activeRow_next <= row;  

-- remember the active SDRAM bank 
   inactiveFlag_next <= NO;-- the SDRAM is no longer inactive 
   rasTimer_next <=  

TO_UNSIGNED(RCD_CYCLES,rasTimer_next'length); 
   timer_next <= 

  TO_UNSIGNED(RCD_CYCLES,timer_next'length); 
   state_next <= RW;  
   -- go back and do the read/write operation that  

    caused this activation 
   sdramCntl_state <= "1100"; 
 
  -- no operation 
  else 
   null; 
   sdramCntl_state <= "1101"; 
   
  end if; 
       
 end process combinatorial; 
 
 
 -- update registers on the rising clock edge  
 update: process(clk) 
 begin 
   if clk'event and clk='1' then 
  if rst = YES then 
   state_r   <= INITWAIT; 
   activeBank_r  <= (others=>'0'); 
   activeRow_r  <= (others=>'0'); 
   inactiveFlag_r  <= YES; 
   doRfshFlag_r  <= NO; 
   rdFlag_r  <= NO; 
   wrFlag_r  <= NO; 
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   rfshCntr_r  <= TO_UNSIGNED(0,rfshCntr_r'length); 
   timer_r   <= TO_UNSIGNED(0,timer_r'length); 
   refTimer_r <=  

TO_UNSIGNED(REF_CYCLES,refTimer_r'length); 
   rasTimer_r  <= TO_UNSIGNED(0,rasTimer_r'length); 
   wrTimer_r  <= TO_UNSIGNED(0,wrTimer_r'length); 
  else 
   state_r   <= state_next; 
   activeBank_r  <= activeBank_next; 
   activeRow_r  <= activeRow_next; 
   inactiveFlag_r  <= inactiveFlag_next; 
   doRfshFlag_r  <= doRfshFlag_next; 
   rdFlag_r  <= rdFlag_next; 
   wrFlag_r  <= wrFlag_next; 
   rfshCntr_r  <= rfshCntr_next; 
   timer_r   <= timer_next; 
   refTimer_r  <= refTimer_next; 
   rasTimer_r  <= rasTimer_next; 
   wrTimer_r  <= wrTimer_next; 
  end if; 
   end if; 
 end process update; 
 
end arch; 
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=============================================================== 
 xs_package <xs_pckg.vhd> 
=============================================================== 
 
 Project:  AYK-14 VHSIC Processor Module Hardware Emulator 
 Component:  Commom Component Declaration  
 Description:  Declaration of simple components needed in other 
   components.  
 
 Author:  D. Van den Bout 
 Adapted by:  LT Bryan Fetter 
 Advisor:  Dr. Russ Duren 
 Co-advisor:  Dr. Hersch Loomis 
 Location:  Naval Postgraduate School 
 
 Created:  1 September 2002 
 Modified:  7 November 2002 
 Simulated:   
 Target:  XCV1000E FG1156 
 Software:  Foundation 4.2i 
 Notes: 
 
Disclaimer: NPS, makes no warranty for the use of this code or design. This code is 
provided  "As Is". NPS, assumes no responsibility for  any errors, which may appear in 
this code, nor does it make a commitment  to update the information contained herein. 
NPS specifically disclaims any implied warranties of fitness for a particular purpose. 
  Copyright (c) 2002 NPS 
   All rights reserved. 
=============================================================== 
 
library IEEE; 
use IEEE.std_logic_1164.all; 
use IEEE.numeric_std.all; 
 
package common is 
 
 constant YES: std_logic := '1'; 
 constant NO: std_logic := '0'; 
 constant HI: std_logic := '1'; 
 constant LO: std_logic := '0'; 
 function log2(v: in natural) return natural; 
  
end package common; 
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library IEEE; 
use IEEE.std_logic_1164.all; 
use IEEE.numeric_std.all; 
 
 
package body common is 
 
function log2(v: in natural) return natural is 
 variable n: natural; 
 variable logn: natural; 
begin 
 n := 1; 
 for i in 0 to 128 loop 
  logn := i; 
  exit when (n>=v); 
  n := n * 2; 
 end loop; 
 return logn; 
end function log2; 
 
end package body common; 
 
 
 
library IEEE;--,VIRTEX; 
use IEEE.std_logic_1164.all; 
use IEEE.numeric_std.all; 
--use VIRTEX.components.all; 
 
package xilinx is 
 
component IBUFG 
 port( 
  O: out std_ulogic; 
  I: in std_ulogic 
 ); 
end component; 
 
component CLKDLL 
 port( 
  CLKIN: in  std_ulogic := '0'; 
  CLKFB: in  std_ulogic := '0'; 
  RST:  in  std_ulogic := '0'; 
  CLK0:  out std_ulogic := '0'; 
  CLK90: out std_ulogic := '0'; 
  CLK180: out std_ulogic := '0'; 
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  CLK270: out std_ulogic := '0'; 
  CLK2X: out std_ulogic := '0'; 
  CLKDV: out std_ulogic := '0'; 
  LOCKED: out std_ulogic := '0' 
 ); 
end component; 
 
component BUFG 
 port( 
    O: out std_ulogic; 
  I: in std_ulogic 
 ); 
end component; 
 
component OBUF 
 port( 
  O: out std_ulogic; 
  I: in std_ulogic 
 ); 
end component; 
 
end package xilinx; 
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=============================================================== 
 Odd Parity Generator <oddparity.vhd.vhd> 
=============================================================== 
 
 Project:  AYK-14 VHSIC Processor Module Hardware Emulator 
 Component:  Odd Parity Generator 
 Description: Odd parity generator adapted from a design in "Essential VHDL" 

by Sundar Rajan. Generates sets of XORs and connects them to the 
bits of the incoming Byte to generate odd parity 

 
 Author:  Sundar Rajan  
 Adapted by:  LT Bryan Fetter, USN  
 Advisor:  Dr. Russ Duren 
 Co-advisor:  Dr. Hersch Loomis 
 Location:  Naval Postgraduate School 
 
 Created:  25 October 2002 
 Modified:  24 November 2002 
 Simulated:   
 Target:  XCV1000E FG1156 
 Software:  Foundation 4.2i 
 Notes: 
 
Disclaimer: NPS, makes no warranty for the use of this code or design. This code is 
provided  "As Is". NPS, assumes no responsibility for  any errors, which may appear in 
this code, nor does it make a commitment  to update the information contained herein. 
NPS specifically disclaims any implied warranties of fitness for a particular purpose. 
  Copyright (c) 2002 NPS 
   All rights reserved. 
=============================================================== 
 
library IEEE; 
use IEEE.std_logic_1164.all; 
use IEEE.numeric_std.all; 
 
package oddParity is 
 
component oddParityGen 
    generic( width : integer := 8); 
    port ( 
        data: in UNSIGNED (width - 1 downto 0); 
        parity: out STD_LOGIC 
    ); 
end component; 
 
end package oddParity; 
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library IEEE; 
use IEEE.std_logic_1164.all; 
use IEEE.numeric_std.all; 
 
entity oddParityGen is 
    generic( width : integer := 8); 
    port ( 
        data: in UNSIGNED (width - 1 downto 0); 
        parity: out STD_LOGIC 
    ); 
end oddParityGen; 
 
architecture oddParityGen_arch of oddParityGen is 
begin 
 
  process (data) 
    variable loopXor: std_logic; 
  begin 
    loopXor := '0'; 
     
    for i in 0 to width -1 loop 
      loopXor := loopXor xor data(i); 
    end loop; 
     
    parity <= loopXor; 
     
  end process; 
   
end oddParityGen_arch; 
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=============================================================== 
 MBUS Desire / Grant Arbitrator <grant_logic.vhd> 
=============================================================== 
 
 Project:  AYK-14 VHSIC Processor Module Hardware Emulator 
 Component:  MBUS Grant Arbitrator 
 Description: State machine that provides rotating priority logic to determine the 

next user of the MBUS. The component analyzes the MBUS 
Request signals from the 3 MBUS users and provides MBUS 
Grant signals to the appropriate user. The priority is a rotating type 
that ensures that each user has equal access to the bus based upon 
the previous user. 

 
 Author:  LT Bryan Fetter, USN 
 Advisor:  Dr. Russ Duren 
 Co-advisor:  Dr. Hersch Loomis 
 Location:  Naval Postgraduate School 
 
 Created:  25 October 2002 
 Modified:  7 November 2002 
 Simulated:   
 Target:  XCV1000E FG1156 
 Software:  Foundation 4.2i 
 Notes: 
 
Disclaimer: NPS, makes no warranty for the use of this code or design. This code is 
provided  "As Is". NPS, assumes no responsibility for  any errors, which may appear in 
this code, nor does it make a commitment  to update the information contained herein. 
NPS specifically disclaims any implied warranties of fitness for a particular purpose. 
  Copyright (c) 2002 NPS 
   All rights reserved. 
=============================================================== 
 
library IEEE; 
use IEEE.std_logic_1164.all; 
use IEEE.numeric_std.all; 
--use IEEE.std_logic_unsigned.all; 
--use IEEE.std_logic_arith.all; 
 
 
package Grant is 
 
component Grant_Logic 
    port ( 
        M_Desire_Ext: in UNSIGNED (1 downto 0); 
        M_Desire_Proc: in STD_LOGIC; 
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        M_Grant_Ext: out UNSIGNED (1 downto 0); 
 M_Grant_Proc: out STD_LOGIC; 
        Clk: in STD_LOGIC; 
        Rst: in STD_LOGIC 
    ); 
end component; 
 
end package Grant; 
 
library IEEE; 
use IEEE.std_logic_1164.all; 
use IEEE.numeric_std.all; 
--use IEEE.std_logic_unsigned.all; 
--use IEEE.std_logic_arith.all; 
 
entity Grant_Logic is 
    port ( 
        M_Desire_Ext: in UNSIGNED (1 downto 0); 
        M_Desire_Proc: in STD_LOGIC; 
        M_Grant_Ext: out UNSIGNED (1 downto 0); 
 M_Grant_Proc: out STD_LOGIC; 
        Clk: in STD_LOGIC; 
        Rst: in STD_LOGIC 
    ); 
end Grant_Logic; 
 
architecture Grant_Logic_arch of Grant_Logic is 
 
type FSM_type is (Idle,Grant); 
signal Curr_State, Next_State : FSM_Type; 
signal User : UNSIGNED (1 downto 0); 
signal Pri_0,Pri_1,Pri_2 : UNSIGNED (1 downto 0); 
 
signal M_Desire_Int : UNSIGNED (2 downto 0); 
signal M_Grant_Int : UNSIGNED (2 downto 0); 
 
 
begin 
 
M_Desire_Int(1) <= M_Desire_Ext(1); 
M_Desire_Int(0) <= M_Desire_Ext(0); 
M_Desire_Int(2) <= M_Desire_Proc; 
 
M_Grant_Ext(1) <= M_Grant_Int(1); 
M_Grant_Ext(0) <= M_Grant_Int(0); 
M_Grant_Proc <= M_Grant_Int(2);   
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nxtStProc: process(Curr_State,Next_State, M_Desire_Int, User) 
     
  begin 
            
      case Curr_State is 
         
         
        when Idle => 
           
          if M_Desire_Int /= "111" then 
            Next_State <= Grant; 
          else  
            Next_State <= Idle; 
          end if; 
       
        when Grant => 
          if (M_Desire_Int(to_integer(User)) = '0') then   
     Next_State <= Grant; 
   else 
     Next_State <= Idle; 
   end if;   
 
 when others =>  
   null; 
    
       end case; 
     end process nxtStProc; 
      
--Process to register current state 
 
  curStProc: process (Clk, Rst)  
  begin 
    if (Rst = '0') then 
       Curr_State <= Idle;       
    elsif (Clk'event and Clk ='1') then 
       Curr_State <= Next_State; 
    end if; 
  end process curStProc; 
   
--Process to generate outputs 
 
  outConProc: process(Curr_State,M_Desire_Int,Pri_0,Pri_1,Pri_2,User) 
       
  begin 
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    case Curr_State is 
     
    when Idle => 
       M_Grant_Int <= "000"; 
        
       --to handle Reset 
       if (Pri_0 = Pri_1) then 
         if ((M_Desire_Int(0)) = '0' )then 
           User <= "00"; 
         elsif ((M_Desire_Int(1)) = '0' )then 
           User <= "01"; 
         elsif ((M_Desire_Int(2)) = '0' )then 
           User <= "10"; 
         end if; 
       elsif (M_Desire_Int(to_integer(Pri_0)) = '0' )then 
         User <= Pri_0; 
       elsif (M_Desire_Int(to_integer(Pri_1)) = '0' )then 
         User <= Pri_1; 
       elsif (M_Desire_Int(to_integer(Pri_2)) = '0' )then 
         User <= Pri_2; 
       end if; 
        
                     
     when Grant =>  
       M_Grant_Int(to_integer(User)) <= '1'; 
        
       if User = "00" then 
         Pri_0 <= "01"; 
         Pri_1 <= "10"; 
         Pri_2 <= "00"; 
       elsif User = "01" then 
         Pri_0 <= "10"; 
         Pri_1 <= "00"; 
         Pri_2 <= "01"; 
       elsif User = "10" then 
         Pri_0 <= "00"; 
         Pri_1 <= "01"; 
         Pri_2 <= "10"; 
       else 
         Pri_0 <= "00"; 
         Pri_1 <= "01"; 
         Pri_2 <= "10"; 
       end if; 
                 
     when others => 
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       null; 
      
    end case; 
    
   end process outConProc;   
 
end Grant_Logic_arch; 
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=============================================================== 
 MBUS Controller <mbus_controller.vhd> 
=============================================================== 
 
 Project:  AYK-14 VHSIC Processor Module Hardware Emulator 
 Component:  MBUS Controller 
 Description: State Machine that controls the MBUS interface. It determines the 

user of the bus via the Grant_Logic component and generates the 
appropriate control signals for operation of the Bus for reads and 
writes both to OBM by an external user as well as reads and writes 
to external memory by the Processor. It also generates and 
validates the appropriate parity signals. 

 
 Author:  LT Bryan Fetter, USN 
 Advisor:  Dr. Russ Duren 
 Co-advisor:  Dr. Hersch Loomis 
 Location:  Naval Postgraduate School 
 Created:  25 October 2002 
 Modified:  23 November 2002 
 Simulated:  27 November 2002 
 Target:  XCV1000E FG1156 
 Software:  Foundation 4.2i 
 Notes: 
 
 
Disclaimer: NPS, makes no warranty for the use of this code or design. This code is 
provided  "As Is". NPS, assumes no responsibility for  any errors, which may appear in 
this code, nor does it make a commitment  to update the information contained herein. 
NPS specifically disclaims any implied warranties of fitness for a particular purpose. 
  Copyright (c) 2002 NPS 
   All rights reserved. 
=============================================================== 
 
library IEEE; 
use IEEE.std_logic_1164.all; 
use IEEE.numeric_std.all; 
use WORK.Grant.all; 
use WORK.common.all; 
use WORK.oddParity.all; 
--use IEEE.std_logic_arith.all; 
 
package MBUS_CTRL is  
 
component MBUS_Controller  
    generic( 
  FREQ: natural := 40_000  -- operating frequency in KHz 
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    ); 
    port ( 
        Clk: in std_logic; 
        Rst: in std_logic; 
        -- Signals from Processor 
        P_Data_WR:  in unsigned(31 downto 0); 
        P_Data_RD:  out unsigned(31 downto 0); 
        P_Addr:  in unsigned(22 downto 0); 
        P_RD_Req: in std_logic; 
        P_WR_Req: in std_logic; 
        P_Desire_L: in std_logic; 
        P_Mem_Done: out STD_LOGIC; 
        P_Grant_Out: out std_logic; --Grant signal to Processor 
         
        -- Signals from Memory Arbitrator 
        Mem_Addr: out unsigned(22 downto 0); 
        Mem_Data_WR: out unsigned(31 downto 0); 
        Mem_Data_RD: in unsigned(31 downto 0); 
        Mem_WR_Req: out std_logic; 
        Mem_RD_Req: out std_logic; 
        Mem_Done: in std_logic; 
        -- Signals on/off Adapter 
        M_BUS:  inout unsigned(22 downto 0); 
        --M_GRANT_IN_L: in std_logic; Used only when used as Slave 
        M_DESIRE_IN_L: in unsigned(1 downto 0); 
        M_GRANT_OUT: out unsigned(1 downto 0); 
        --M_DESIRE_OUT_L: out std_logic;--Used only when VPM used as Slave 
        M_REQUEST_L: inout std_logic; 
        M_ACKNOWLEDGE_L:in std_logic; 
        M_RESUME_L: inout std_logic; 
        S_BUSY_L: out std_logic; 
        M_BUSY_L: inout std_logic; 
        BUS_ERROR_L: inout std_logic; 
         --Parity Bits 
        LSB_PARITY: inout std_logic; 
        MSB_PARITY: inout std_logic; 
        ADRS_PARITY: inout std_logic; 
        CMD_PARITY: inout std_logic; 
         --Control Bits 
        MSB_WRITE_L: inout std_logic; 
        LSB_WRITE_L: inout std_logic; 
        THREE_TWO_DATA: inout std_logic; 
        IPL_WRITE: inout std_logic; 
         
        --Signals used for Testing Only 
        Timer_Out: out unsigned(log2(9+1)-1 downto 0); 
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        Timer_next_Out: out unsigned(log2(9+1)-1 downto 0); 
        M_ACKNOWLEDGE_L_test_Out: out std_logic 
         
    ); 
end component; 
     
end MBUS_Ctrl; 
 
library IEEE; 
use IEEE.std_logic_1164.all; 
use IEEE.numeric_std.all; 
use WORK.Grant.all; 
use WORK.Common.all; 
use WORK.oddParity.all;--use IEEE.std_logic_arith.all; 
 
entity MBUS_Controller is 
    generic( 
        FREQ: natural := 40_000 -- operating frequency in KHz 
    ); 
    port ( 
        Clk: in std_logic; 
        Rst: in std_logic; 
        -- Signals from Processor 
        P_Data_WR:  in unsigned(31 downto 0); 
        P_Data_RD:  out unsigned(31 downto 0); 
        P_Addr:  in unsigned(22 downto 0); 
        P_RD_Req: in std_logic; 
        P_WR_Req: in std_logic; 
        P_Desire_L: in std_logic; 
        P_Mem_Done: out STD_LOGIC; 
        P_Grant_Out: out std_logic; --Grant signal to Processor 
         
        -- Signals from Memory Arbitrator 
        Mem_Addr: out unsigned(22 downto 0); 
        Mem_Data_WR: out unsigned(31 downto 0); 
        Mem_Data_RD: in unsigned(31 downto 0); 
        Mem_WR_Req: out std_logic; 
        Mem_RD_Req: out std_logic; 
        Mem_Done: in std_logic; 
        -- Signals on/off Adapter 
        M_BUS:  inout unsigned(22 downto 0); 
--        M_GRANT_IN_L: in std_logic; --Used only when VPM used as Slave 
        M_DESIRE_IN_L: in unsigned(1 downto 0); 
        M_GRANT_OUT: out unsigned(1 downto 0); 
--        M_DESIRE_OUT_L: out std_logic;--Used only when VPM used as Slave 
        M_REQUEST_L: inout std_logic; 
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        M_ACKNOWLEDGE_L:in std_logic; 
        M_RESUME_L: inout std_logic; 
        S_BUSY_L: out std_logic; 
        M_BUSY_L: inout std_logic; 
        BUS_ERROR_L: inout std_logic; 
         --Parity Bits 
        LSB_PARITY: inout std_logic;--Odd Parity for Bits MBUS(0:7) 
        MSB_PARITY: inout std_logic;--Odd Parity for Bits MBUS(8:15) 
        ADRS_PARITY: inout std_logic;--Odd Parity for Bits MBUS(16:22) 
        CMD_PARITY: inout std_logic;--Odd Parity for  
            --MSB_Write/LSB_Write/32_Bit_Data/IPL_Write 
         --Control Bits 
        MSB_WRITE_L: inout std_logic; 
        LSB_WRITE_L: inout std_logic; 
        THREE_TWO_DATA: inout std_logic; 
        IPL_WRITE: inout std_logic; 
         
         --Signals used for Testing Only 
        Timer_Out: out unsigned(log2(8+1)-1 downto 0); 
        Timer_Next_Out: out unsigned(log2(8+1)-1 downto 0); 
        M_ACKNOWLEDGE_L_test_Out: out std_logic 
    ); 
end MBUS_Controller; 
 
architecture MBUS_Controller_arch of MBUS_Controller is 
 
--constants 
 
constant Mem_Blk_1_L : natural := 1048576 ;  
--Lower bound of VPM Master OBM (100000H) 
constant Mem_Blk_1_H : natural := 2097151 ;  
--Upper bound of VPM Master OBM (1FFFFFH) 
constant Mem_Blk_1_Up_Bits : unsigned(2 downto 0) := "001";  
--Bits 22-20 of Address = 001 if in Blk 1 
constant Mem_Blk_2_L : natural := 2097152 ;  
--Lower bound of VPM Slave1 OBM (200000H) 
constant Mem_Blk_2_H : natural := 3145727 ;  
--Upper bound of VPM Slave1 OBM (2FFFFFH) 
 
constant MAX_DELAY: natural := 200;      
-- Max Delay interval (ns) (Changed for testing only) 
constant TIMER_CYCLES: natural := 1 + ((MAX_DELAY * FREQ) / 1000000);  
-- ACK Signal Max Delay (20ns) 
 
--Constants for Clarity of Code 
constant ACTIVE: std_logic := '1'; 
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constant ACTIVE_L: std_logic := '0'; --For active low signal 
constant INACTIVE: std_logic := '0';  
constant INACTIVE_L: std_logic := '1'; --For active low signal 
 
signal Timer, Timer_next: unsigned(log2(TIMER_CYCLES+1)-1 downto 0);  
-- current Delay time 
 
--All signals tied to input/output have same name with _Int addended 
 
signal  Clk_Int : std_logic;  
signal  Rst_Int : std_logic; 
signal  P_Grant_Int: std_logic; --Signal used for Processor Grant Indication 
signal M_BUS_Int: unsigned(22 downto 0);  --INOUT 
signal M_BUS_Read: unsigned(22 downto 0); 
signal  P_Data_WR_Int:  unsigned(31 downto 0); 
signal  P_Data_RD_Int:  unsigned(31 downto 0); 
signal  P_Addr_Int:  unsigned(22 downto 0); 
signal  P_RD_Req_Int: std_logic; 
signal  P_WR_Req_Int: std_logic; 
--Signals used for Grant_Logic 
signal M_GRANT_OUT_Int: unsigned(1 downto 0); 
signal M_Grant_Proc_Int: std_logic; 
--Signals used for control logic 
signal M_DESIRE_IN_L_Int:  unsigned(1 downto 0); 
signal  M_REQUEST_L_Int: std_logic;  --INOUT 
signal  M_ACKNOWLEDGE_L_Int: std_logic; 
signal  M_RESUME_L_Int:  std_logic;  --INOUT 
signal MSB_WRITE_L_Int: std_logic;  --INOUT 
signal LSB_WRITE_L_Int: std_logic;  --INOUT 
signal  THREE_TWO_DATA_Int: std_logic;  --INOUT 
signal IPL_WRITE_Int:  std_logic;  --INOUT 
signal M_BUSY_L_Int:  std_logic;  --INOUT 
signal  Mem_DONE_Int:  std_logic; 
signal S_BUSY_L_Int:  std_logic; 
signal  Mem_Addr_Int:  unsigned(22 downto 0); 
signal  BUS_ERROR_L_Int: std_logic; 
--Signal used for timeout 
signal Time_Out: std_logic; 
--Signal to indicate Parity Error 
signal Parity_Error_Int: std_logic; 
--Signals for parity generation for External drivers of signals 
signal LSB_Parity_Generate_Input:  std_logic;   
signal MSB_Parity_Generate_Input:  std_logic;   
signal ADRS_Parity_Generate_Input:  std_logic;   
signal CMD_Parity_Generate_Input:  std_logic; 
--Signals for parity generation for Internal drivers of signals 
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signal LSB_Parity_Generate_Output:  std_logic;   
signal MSB_Parity_Generate_Output:  std_logic;   
signal ADRS_Parity_Generate_Output:  std_logic; 
signal CMD_Parity_Generate_Output:  std_logic;   
--Signals for parity input 
signal LSB_Parity_Int:  std_logic; --INOUT 
signal MSB_Parity_Int:  std_logic; --INOUT 
signal ADRS_Parity_Int:  std_logic; --INOUT 
signal CMD_Parity_Int:  std_logic; --INOUT 
--Signal for Parity Generator Format 
signal ADRS_Parity_Input: unsigned(7 downto 0); 
signal ADRS_Parity_Output:unsigned(7 downto 0); 
signal CMD_Parity_Input: unsigned(7 downto 0); 
signal CMD_Parity_Output: unsigned(7 downto 0); 
 
--Signal to drive INOUTS 
signal Drive_MBUS:  std_logic; 
signal Drive_Resume:  std_logic; 
signal Drive_Request:   std_logic; 
signal Drive_M_Busy:  std_logic; 
signal Drive_Bus_Error: std_logic; 
signal Drive_LSB_Parity: std_logic; 
signal Drive_MSB_Parity: std_logic; 
signal Drive_ADRS_Parity: std_logic; 
signal Drive_CMD_Parity: std_logic; 
signal Drive_MSB_Write:  std_logic; 
signal Drive_LSB_Write:  std_logic; 
signal Drive_Three_Two_Data: std_logic; 
signal Drive_IPL_Write:  std_logic; 
 
--Signals to Latch 
signal M_ACKNOWLEDGE_L_test:std_logic; 
signal Mem_Data_RD_Int:  unsigned(31 downto 0); 
signal Mem_Data_WR_Int:  unsigned(31 downto 0); 
signal Mem_Data_WR_Int_Out: unsigned(31 downto 0);   
--Latch Driver Signals 
signal M_ACK_Latch:  std_logic; 
signal P_DATA_RD_Latch:  std_logic; 
signal M_Addr_Latch:  std_logic; 
signal Mem_Data_RD_Latch: std_logic; 
signal Mem_Data_WR_Latch: std_logic; 
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type FSM_type is    
(Idle, Addr_Out_M,Req_M, Ack_Read_M, Data_Clk_In_M, Rsm_Read_M, 
Ack_Write_M, Data_Clk_Out_M, Rsm_Write_M, 
Req_Read_S,AddClkIn_Read_S, Ack_Read_S, Rsm_Read_S, Read_Done_S, 
Req_Write_S, AddClkIn_Write_S, Ack_Write_S, Write_Data_S, Rsm_Write_S, 
Write_Done_S,Error_Internal, Error_External); 

    --Req_M - if Master has use of MBUS 
    --Req_Write_S - if slave has use of MBUS for Write Operation 
    --Req_Read_S - if slave has use of MBUS for Read Operation 
    --Ack_Read_M - Acknowlege Phase of a Master read operation 
    --Data_Clk_In_M - State that clocks in Data off BUS 
    --Ack_Write_M - Acknowlege Phase of a Master write operation 
    --Ack_Read_S - Acknowlege Phase of a Slave read operation 
    --Ack_Write_S - Acknowlege Phase of a Slave write operation 
    --Rsm_Read_M - Resume Phase of a Master read operation 
    --Rsm_Write_M - Resume Phase of a Master write operation 
    --Data_Clk_Out_M - Clock Out the Data to be written    
    --Rsm_Write_S - Resume Phase of a slave read operation 
    --Rsm_Read_S - Resume Phase of a slave write operation 
    --Error_Internal- Error state caused by Internal Error 
     --Error_External- Error state caused by External Error 
    --AddCLkIn_Read_S- Clock in Address for Read operation 
    --AddClkIn_Write_S- Clock in Address for Write operation 
    --Read_Done_S - Data removed from bus but bus not available yet 
    --DataClkIn_Write_S - Clock in data to write to memory 
    --Write_Data_S - Wait state for data to be written to memory 
    --Write_Done_S - Wait state for completion of Write operation 
    --Addr_Out_M - Wait 1 clock after puting address on Bus to  
            --drive Request Signal 
     
signal Curr_State, Next_State : FSM_Type; 
 
 
begin 
 
--Connect all appropriate signals 
Clk_Int <= Clk; 
Rst_Int <= Rst; 
M_GRANT_OUT <= M_GRANT_OUT_Int;  
--Connect Grant signals to output port 
--P_RD_Req_Int <= P_RD_Req; 
--P_WR_Req_Int <= P_WR_Req; 
P_Addr_Int <= P_Addr; 
P_Data_WR_Int <= P_Data_WR; 
P_Grant_Out <= M_Grant_Proc_Int; 
M_DESIRE_IN_L_Int <= M_DESIRE_IN_L; 
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M_ACKNOWLEDGE_L_Int <= M_ACKNOWLEDGE_L; 
S_BUSY_L <= S_BUSY_L_Int; 
Mem_Data_WR <= Mem_Data_WR_Int_Out; 
Mem_DONE_Int <= Mem_DONE; 
M_BUS_Read <= M_BUS; 
Mem_Addr <= Mem_Addr_Int; 
 
--Tristates for INOUTs 
 
M_RESUME_L <= M_RESUME_L_Int  when Drive_Resume = ACTIVE else ('Z'); 
M_BUS <= M_BUS_Int   when Drive_MBUS = ACTIVE else (others =>'Z'); 
M_REQUEST_L <= M_REQUEST_L_Int when Drive_Request = ACTIVE else ('Z');  
M_BUSY_L <= M_BUSY_L_Int when Drive_M_Busy = ACTIVE else ('Z');     
LSB_PARITY <= LSB_PARITY_Int when Drive_LSB_Parity = ACTIVE else ('Z'); 
MSB_PARITY <= MSB_PARITY_Int when Drive_MSB_Parity = ACTIVE else ('Z'); 
ADRS_PARITY <= ADRS_PARITY_Int when Drive_ADRS_Parity = ACTIVE else 
('Z');  
CMD_PARITY <= CMD_PARITY_Int when Drive_CMD_Parity = ACTIVE else ('Z');  
MSB_WRITE_L <= MSB_WRITE_L_Int when Drive_MSB_Write = ACTIVE else 
('Z');  
LSB_WRITE_L <= LSB_WRITE_L_Int when Drive_LSB_Write = ACTIVE else ('Z'); 
THREE_TWO_DATA <= THREE_TWO_DATA_Int when Drive_Three_Two_Data = 
ACTIVE else ('Z'); 
IPL_WRITE <= IPL_WRITE_Int when Drive_IPL_Write = ACTIVE else ('Z'); 
BUS_ERROR_L <= BUS_ERROR_L_Int when Drive_Bus_Error = ACTIVE else 
('Z'); 
 
--Latch Signals 
P_DATA_RD_Int <= ("0000000000000000" & M_Bus(15 downto 0)) when 
P_DATA_RD_Latch = ACTIVE else P_DATA_RD_Int; 
P_Data_RD <= P_Data_RD_Int; 
Mem_Addr_Int <= M_BUS when M_Addr_Latch = ACTIVE else Mem_Addr_Int; 
Mem_Data_RD_Int <= Mem_Data_RD when Mem_Data_RD_Latch = ACTIVE else 
Mem_Data_RD_Int; 
Mem_Data_WR_Int_Out <= Mem_Data_WR_Int when Mem_Data_WR_Latch = 
ACTIVE else Mem_Data_WR_Int_Out; 
 
--Signals for Testing only 
Timer_Out <= Timer; 
Timer_Next_Out <= Timer_Next; 
--Latch Test 
M_ACKNOWLEDGE_L_test <= M_ACKNOWLEDGE_L when M_ACK_Latch = 
ACTIVE else M_ACKNOWLEDGE_L_test;  
M_ACKNOWLEDGE_L_test_Out <= M_ACKNOWLEDGE_L_test; 
   
--Assigning Signals for Parity Generator 
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ADRS_Parity_Input <= M_BUS_Int(22 downto 16) & "0"; 
ADRS_Parity_Output <= P_Addr_Int(22 downto 16) & "0"; 
CMD_Parity_Input <= MSB_WRITE_L & LSB_WRITE_L & THREE_TWO_DATA & 
IPL_WRITE & "0000"; 
CMD_Parity_Output <= MSB_WRITE_L_Int & LSB_WRITE_L_Int & 
THREE_TWO_DATA_Int & IPL_WRITE_Int & "0000"; 
 
--Instantiate Grant Logic Module 
  u0: Grant_logic port map (   M_Desire_Ext => M_DESIRE_IN_L_Int,  

M_Desire_Proc => P_Desire_L,  
M_Grant_Ext => M_GRANT_OUT_Int  , 
 --Grant Signal to external signal  
M_Grant_Proc => M_Grant_Proc_Int ,  
 --Grant Signal to internal signal 

       Clk => Clk_Int, 
            Rst => Rst_Int 
           ); 
 
--Instantiate Parity Generator  
  --LSB Parity for Input 
  u1: oddParityGen port map (  
        data => M_BUS_Int(7 downto 0), 
        parity => LSB_Parity_Generate_Input 
    ); 
     
  u2: oddParityGen port map (  
        data => P_Addr_Int(7 downto 0), 
        parity => LSB_Parity_Generate_Output 
    ); 
  --MSB Parity for Input 
  u3: oddParityGen port map (  
        data => M_BUS_Int(15 downto 8), 
        parity => MSB_Parity_Generate_Input 
    ); 
     
  u4: oddParityGen port map (  
        data => P_Addr_Int(15 downto 8), 
        parity => MSB_Parity_Generate_Output 
    ); 
 --ADRS Parity for Input 
  u5: oddParityGen port map (  
        data => ADRS_Parity_Input, 
        parity => ADRS_Parity_Generate_Input 
    ); 
     
  u6: oddParityGen port map (  
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        data => ADRS_Parity_Input, 
        parity => ADRS_Parity_Generate_Output 
    ); 
 --CMD Parity for Input 
  u7: oddParityGen port map (  
        data => CMD_Parity_Input, 
        parity => CMD_Parity_Generate_Input 
    ); 
     
  --CMD Parity for Output 
  u8: oddParityGen port map (  
        data => CMD_Parity_Output, 
        parity => CMD_Parity_Generate_Output 
    ); 
     
     
     
--Next State Conditioning Logic (Process 1) 
             
nxtStProc: process(Curr_State,Timer,Timer_next,BUS_ERROR_L,M_DESIRE_IN_L, 

Mem_DONE,LSB_WRITE_L,CMD_Parity, 
M_RESUME_L,M_Grant_Proc_Int,MSB_Parity_Generate_Input,LSB_Pa
rity_Generate_Input,M_BUSY_L,M_BUS_Read,M_BUS_Int,M_BUS, 
MSB_WRITE_L,Time_Out,P_RD_Req,CMD_Parity_Generate_Input,P_
WR_Req,MSB_Parity, 
ADRS_Parity_Generate_Input,M_REQUEST_L,M_ACKNOWLEDGE_
L_Int,M_GRANT_OUT_Int,LSB_Parity, 
ADRS_Parity,M_DESIRE_IN_L_Int) 

     
  begin 
            
      case Curr_State is 
         
        when Idle => 
        --Go to Master states if processor has been granted bus use  
          if M_Grant_Proc_Int = ACTIVE then 
            next_state <=  Addr_Out_M; 
            Timer_Next <= TO_UNSIGNED(TIMER_CYCLES,Timer'length); 
             --Start Timer 
        --If Slave has bus use AND address in OBM range AND Write signals are active 
GOTO Slave Write states     
          elsif ((M_GRANT_OUT_Int(0) = ACTIVE or M_GRANT_OUT_Int(1) = 
ACTIVE) and M_REQUEST_L = ACTIVE_L and (M_BUS(22 downto 20) = 
Mem_Blk_1_Up_Bits) and MSB_WRITE_L = ACTIVE_L  
                 and LSB_WRITE_L = ACTIVE_L) then 
            --Check Parity      
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            if (LSB_Parity_Generate_Input = LSB_Parity and MSB_Parity_Generate_Input = 
MSB_Parity and CMD_Parity_Generate_Input = CMD_Parity and 
ADRS_Parity_Generate_Input = ADRS_Parity) then 
              next_state <=  Req_Write_S; 
             Timer_Next<= TO_UNSIGNED(TIMER_CYCLES,Timer'length); --Start Timer 
            else  
              next_state <= Error_Internal; 
            end if; 
        --If Slave has bus use AND address in OBM range AND Write signals are 
INACTIVE GOTO Slave Write states      
          elsif ((M_GRANT_OUT_Int(0) = ACTIVE or M_GRANT_OUT_Int(1) = 
ACTIVE) and M_REQUEST_L = ACTIVE_L and (M_BUS(22 downto 20) = 
Mem_Blk_1_Up_Bits) and MSB_WRITE_L = INACTIVE_L and LSB_WRITE_L = 
INACTIVE_L) then 
            --Check Parity 
            if (LSB_Parity_Generate_Input = LSB_Parity and MSB_Parity_Generate_Input = 
MSB_Parity and CMD_Parity_Generate_Input = CMD_Parity and 
ADRS_Parity_Generate_Input = ADRS_Parity) then 
              next_state <=  Req_Read_S; 
             Timer_Next<= TO_UNSIGNED(TIMER_CYCLES,Timer'length); --Start Timer 
            else  
              next_state <= Error_Internal; 
            end if; 
         else 
            next_state <= Idle; 
         end if; 
--States for Master Bus Usage           
        when Addr_Out_M => 
           next_state <= Req_M; 
         
        when Req_M => 
           if (M_ACKNOWLEDGE_L_Int = ACTIVE_L) then 
             if (P_RD_Req = ACTIVE) then 
               next_state <= Ack_Read_M; 
             elsif (P_WR_Req = ACTIVE) then 
               next_state <= Ack_Write_M; 
             end if; 
           elsif (BUS_ERROR_L = ACTIVE_L) then 
             next_state <= Error_External; 

 elsif (Time_Out = ACTIVE and M_ACKNOWLEDGE_L_Int = INACTIVE_L) 
 then 

             next_state <= Error_Internal; 
           else 
             next_state <= Req_M; 
           end if; 
 --States for Master Read         
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        when Ack_Read_M => 
           --if (M_RESUME_L_Int = ACTIVE_L) then 
           if (M_RESUME_L = ACTIVE_L) then 
             next_state <= Data_Clk_In_M; 
           else 
             next_state <= Ack_Read_M; 
           end if; 
            
        when Data_Clk_In_M => 
           next_state <= Rsm_Read_M; 
         
        when Rsm_Read_M => 
            
           if (M_ACKNOWLEDGE_L_Int = INACTIVE_L) then 
             next_state <= Idle; 
           else 
             next_state <= Rsm_Read_M; 
           end if; 
            
        --States for Master Write    
        when Ack_Write_M => 
            next_state <= Data_Clk_Out_M;  
            
        when Data_Clk_Out_M => 
            
           if (M_RESUME_L = ACTIVE_L) then 
             next_state <= Rsm_Write_M; 
           else 
             next_state <= Data_Clk_Out_M; 
           end if;              
                    
        when Rsm_Write_M =>  
            
           if (M_ACKNOWLEDGE_L_Int = INACTIVE_L) then 
             next_state <= Idle; 
           else 
             next_state <= Rsm_Write_M; 
           end if; 
            
--States for External user of MBUS 
         
--States for a Slave Read  
        when Req_Read_S => 
           next_state <= AddCLkIn_Read_S; 
             
        when AddCLkIn_Read_S => 
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           if (Mem_DONE = ACTIVE) then 
             next_state <= Ack_Read_S; 
           else 
             next_state <= AddCLkIn_Read_S; 
           end if; 
         
        when Ack_Read_S => 
           if (M_REQUEST_L = INACTIVE_L) then 
             next_state <= Rsm_Read_S; 
           else 
             next_state <= Ack_Read_S; 
           end if; 
            
        when Rsm_Read_S => 
           if (M_BUSY_L = INACTIVE_L) then 
             next_state <= Read_Done_S; 
           else 
             next_state <= Rsm_Read_S; 
           end if; 
            
        when Read_Done_S => 
           next_state <= Idle; 
                       
--States for Slave Write 
         
        when Req_Write_S => 
           next_state <= AddClkIn_Write_S; 
            
        when AddClkIn_Write_S => 
           if (M_REQUEST_L = INACTIVE_L) then 
             next_state <= Ack_Write_S; 
           else 
             next_state <= AddClkIn_Write_S; 
           end if; 
         
        when Ack_Write_S => 
           next_state <= Write_Data_S; 
      
        when Write_Data_S => 
           if (Mem_DONE = ACTIVE) then 
             next_state <= Rsm_Write_S; 
           else  
             next_state <= Write_Data_S; 
           end if; 
         
        when Rsm_Write_S => 
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           if (M_BUSY_L = INACTIVE_L) then 
             next_state <= Write_Done_S; 
           else 
             next_state <= Rsm_Write_S; 
           end if; 
         
        when Write_Done_S => 
           next_state <= Idle; 
            
        
-- States for errors            
        when Error_Internal => 
           if ((M_DESIRE_IN_L(0) = INACTIVE_L and M_GRANT_OUT_Int(0) = 
INACTIVE) or   (M_DESIRE_IN_L(1) = INACTIVE_L and M_GRANT_OUT_Int(1) = 
INACTIVE)) then 
              next_state <= Idle; 
           else 
             next_state <= Error_Internal; 
           end if; 
              
 when Error_External => 
    if (BUS_ERROR_L = INACTIVE_L) then 
      next_state <= Idle; 
    else 
      next_state <= Error_External; 
    end if; 
    
 when others =>  
   null; 
    
       end case; 
 
       --Timer will count down after being started by leaving Idle State 
     case Curr_State is 
      
       when Idle => 
         null; 
          
       when others => 
        
         if Timer /= TO_UNSIGNED(0,Timer'length) then  
           Timer_next <= Timer - 1; 
           Time_Out <= INACTIVE; 
         else 
           --Timer_next <= Timer; 
           Time_Out <= ACTIVE; 
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         end if; 
      end case; 
        
   end process nxtStProc; 
      
--Current State Vector Register (Process 2) 
 
  curStProc: process (Clk_Int, Rst_Int)  
  begin 
    if (Rst_Int = '0') then 
       Curr_State <= Idle; 
    elsif (Clk_Int'event and Clk_Int ='1') then 
           Curr_State <= Next_State; 
           Timer <= Timer_next;   
    end if; 
  end process curStProc; 
   
 
--Output Conditioning Logic (Process 3) 
  outConProc: 
process(Curr_State,Mem_Data_RD_Int,MSB_Parity_Generate_Input,M_BUS_Int,LSB_
Parity_Generate_Input,P_RD_Req,CMD_Parity_Generate_Input,ADRS_Parity_Generate
_Input,P_Data_WR_Int,P_Addr_Int,LSB_Parity_Generate_Output,MSB_Parity_Generat
e_Output,ADRS_Parity_Generate_Output, CMD_Parity_Generate_Output,M_BUS) 
       
  begin 
       --Default Signal to drive all Tristates High Z 
       Drive_MBUS <= INACTIVE; 
     M_RESUME_L_Int <= INACTIVE_L;    
 Drive_Resume <= INACTIVE;   
 M_REQUEST_L_Int <= INACTIVE_L; 
 Drive_Request <= INACTIVE; 
 M_BUSY_L_Int <= INACTIVE_L; 
 Drive_M_Busy <= INACTIVE; 
 BUS_ERROR_L_Int <= INACTIVE; 
 Drive_Bus_Error <= INACTIVE;   
 LSB_PARITY_Int <= INACTIVE; 
 Drive_LSB_Parity <= INACTIVE;  
 MSB_PARITY_Int <= INACTIVE; 
 Drive_MSB_Parity <= INACTIVE;  
 ADRS_PARITY_Int <= INACTIVE; 
 Drive_ADRS_Parity <= INACTIVE; 
 CMD_PARITY_Int <= INACTIVE; 
 Drive_CMD_Parity <= INACTIVE;  
 MSB_WRITE_L_Int <= INACTIVE; 
 Drive_MSB_Write <= INACTIVE;   
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 LSB_WRITE_L_Int <= INACTIVE; 
 Drive_LSB_Write <= INACTIVE;   
 THREE_TWO_DATA_Int <= INACTIVE; 
 Drive_Three_Two_Data <= INACTIVE;  
 IPL_WRITE_Int <= INACTIVE; 
 Drive_IPL_Write <= INACTIVE;   
        --Drive all outs inactive 
        S_BUSY_L_Int <= INACTIVE_L; 
        P_Mem_Done <= INACTIVE; 
        Mem_WR_Req <= INACTIVE; 
        Mem_RD_Req <= INACTIVE; 
 --Latch Drivers 
 M_ACK_Latch <= INACTIVE; 
 P_DATA_RD_Latch <= INACTIVE; 
 Mem_Data_RD_Latch <= INACTIVE; 
 Mem_Data_WR_Latch <= INACTIVE; 
 M_Addr_Latch <= INACTIVE; 
 
           
    case Curr_State is 
           
     when Idle => 
      null;      
       
--States for Master Operations 
 
     when Addr_Out_M => 
       M_BUS_Int <= P_Addr_Int; --Put Address on Bus 
       Drive_MBUS <= ACTIVE; 
       --Command Signals 
       Drive_MSB_Write <= ACTIVE; 
       Drive_LSB_Write <= ACTIVE; 
       MSB_WRITE_L_Int <= P_RD_Req; 
       LSB_WRITE_L_Int <= P_RD_Req;  
--This signal is active low. The RD signal is active high,therfore 
--when the write signal is active, the read signal will be low. 
       Drive_Three_Two_Data <= ACTIVE; 
       THREE_TWO_DATA_Int <= INACTIVE; 
       Drive_IPL_Write <= ACTIVE; 
       IPL_WRITE_Int <= INACTIVE; 
        --Assign Parity Values 
       Drive_MSB_Parity <= ACTIVE; 
       MSB_PARITY_Int <= MSB_Parity_Generate_Output; 
       Drive_LSB_Parity <= ACTIVE; 
       LSB_PARITY_Int <= LSB_Parity_Generate_Output; 
       Drive_ADRS_Parity <= ACTIVE; 
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       ADRS_PARITY_Int <= ADRS_Parity_Generate_Output; 
       Drive_CMD_Parity <= ACTIVE; 
       CMD_PARITY_Int <= CMD_Parity_Generate_Output; 
 
     when Req_M => 
       --Bus Control Signals 
       M_BUS_Int <= P_Addr_Int; --Put Address on Bus 
       Drive_MBUS <= ACTIVE; 
        
       Drive_Request <= ACTIVE; 
       M_REQUEST_L_Int <= ACTIVE_L;  
--Drive the control signal low to indicate Address is valid 
       Drive_MSB_Parity <= ACTIVE; 
       MSB_PARITY_Int <= MSB_Parity_Generate_Output; 
       Drive_LSB_Parity <= ACTIVE; 
       LSB_PARITY_Int <= LSB_Parity_Generate_Output; 
       Drive_ADRS_Parity <= ACTIVE; 
       ADRS_PARITY_Int <= ADRS_Parity_Generate_Output; 
       Drive_CMD_Parity <= ACTIVE; 
       CMD_PARITY_Int <= CMD_Parity_Generate_Output; 
       Drive_MSB_Write <= ACTIVE; 
       Drive_LSB_Write <= ACTIVE; 
       MSB_WRITE_L_Int <= P_RD_Req; 
       LSB_WRITE_L_Int <= P_RD_Req;  
--This signal is active low. The RD signal is active high,therfore 
--when the write signal is active, the read signal will be low. 
       Drive_Three_Two_Data <= ACTIVE; 
       THREE_TWO_DATA_Int <= INACTIVE; 
       Drive_IPL_Write <= ACTIVE; 
       IPL_WRITE_Int <= INACTIVE; 
        
       M_ACK_Latch <= ACTIVE; 
 
--State for Master Read               
     when Ack_Read_M => 
       --Activate M_Busy Signal 
       Drive_M_Busy <= ACTIVE; 
       M_BUSY_L_Int <= ACTIVE_L; 
              
     when Data_Clk_In_M => 
       P_Data_RD_Latch <= ACTIVE; 
       Drive_M_Busy <= ACTIVE; 
       M_BUSY_L_Int <= ACTIVE_L; 
      
     when Rsm_Read_M => 
       P_Mem_Done <= ACTIVE; 
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       Drive_M_Busy <= ACTIVE; 
       M_BUSY_L_Int <= INACTIVE_L; 
        
--States for Master Write         
     when Ack_Write_M => 
       Drive_Request <= ACTIVE; 
       M_REQUEST_L_Int <= ACTIVE_L; 
       Drive_MSB_Write <= ACTIVE; 
       Drive_LSB_Write <= ACTIVE; 
       MSB_WRITE_L_Int <= P_RD_Req;  
       LSB_WRITE_L_Int <= P_RD_Req; 
       Drive_MSB_Parity <= ACTIVE; 
       MSB_PARITY_Int <= MSB_Parity_Generate_Output; 
       Drive_LSB_Parity <= ACTIVE; 
       LSB_PARITY_Int <= LSB_Parity_Generate_Output; 
        
       Drive_M_Busy <= ACTIVE; 
       M_BUSY_L_Int <= ACTIVE_L; 
       --Drve the MBUS with data  
       Drive_MBUS <= ACTIVE; 
       M_BUS_Int <= ("0000000" & P_Data_WR_Int(15 downto 0)); 
        
     when Data_Clk_Out_M => 
       Drive_MSB_Parity <= ACTIVE; 
       Drive_MSB_Write <= ACTIVE; 
       Drive_LSB_Write <= ACTIVE; 
       MSB_WRITE_L_Int <= P_RD_Req;  
       LSB_WRITE_L_Int <= P_RD_Req; 
       MSB_PARITY_Int <= MSB_Parity_Generate_Output; 
       Drive_LSB_Parity <= ACTIVE; 
       LSB_PARITY_Int <= LSB_Parity_Generate_Output; 
       Drive_M_Busy <= ACTIVE; 
       M_BUSY_L_Int <= ACTIVE_L; 
       Drive_MBUS <= ACTIVE; 
       M_BUS_Int <= ("0000000" & P_Data_WR_Int(15 downto 0)); 
                          
     when Rsm_Write_M =>  
       P_Mem_Done <= ACTIVE; 
       Drive_MSB_Write <= ACTIVE; 
       MSB_WRITE_L_Int <= INACTIVE_L; 
       Drive_LSB_Write <= ACTIVE; 
       LSB_WRITE_L_Int <= INACTIVE_L; 
       Drive_M_Busy <= ACTIVE; 
       M_BUSY_L_Int <= INACTIVE_L; 
       --M_BUS_Int <= (others => 'Z'); 
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--States for External user of MBUS 
      
--States for Slave Read      
     when Req_Read_S => 
       M_Addr_Latch <= ACTIVE; 
       Mem_RD_Req <= ACTIVE; 
            
     when AddCLkIn_Read_S => 
       Mem_RD_Req <= ACTIVE; 
       Mem_Data_RD_Latch <= ACTIVE;--Latches Data off of SDRAM 
       S_BUSY_L_Int <= ACTIVE_L; --Notify user that address is clocked in 
        
        
     when Ack_Read_S => 
       Drive_MBUS <= ACTIVE; 
       M_BUS_Int <= ("0000000" & Mem_Data_RD_Int(15 downto 0)); 
       Drive_MSB_Parity <= ACTIVE; 
       MSB_PARITY_Int <= MSB_Parity_Generate_Output; 
       Drive_LSB_Parity <= ACTIVE; 
       LSB_PARITY_Int <= LSB_Parity_Generate_Output; 
       S_BUSY_L_Int <= ACTIVE_L; 
               
              
     when Rsm_Read_S => 
       Drive_MBUS <= ACTIVE; 
       M_BUS_Int <= ("0000000" & Mem_Data_RD_Int(15 downto 0)); 
       S_BUSY_L_Int <= ACTIVE_L;                
       M_RESUME_L_Int <= ACTIVE_L; 
       Drive_Resume <= ACTIVE; 
         
          
     when Read_Done_S => 
       M_RESUME_L_Int <= ACTIVE_L; 
       Drive_Resume <= ACTIVE; 
       S_BUSY_L_Int <= ACTIVE_L; 
           
--States for Slave Write 
 
     when Req_Write_S => 
       M_Addr_Latch <= ACTIVE; 
       Drive_Resume <= ACTIVE; 
        
     when AddClkIn_Write_S => 
       S_BUSY_L_Int <= ACTIVE_L; 
       Drive_Resume <= ACTIVE; 
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     when Ack_Write_S => 
       Mem_Data_WR_Latch <= ACTIVE; 
       Mem_Data_WR_Int <= ("0000000000000000" & M_BUS(15 downto 0)); 
       Mem_WR_Req <= ACTIVE; 
       S_BUSY_L_Int <= ACTIVE_L; 
       Drive_Resume <= ACTIVE;  
           
     when Write_Data_S => 
       S_BUSY_L_Int <= ACTIVE_L; 
       Drive_Resume <= ACTIVE; 
       Mem_WR_Req <= ACTIVE;        
           
     when Rsm_Write_S => 
       M_RESUME_L_Int <= ACTIVE_L; 
       Drive_Resume <= ACTIVE; 
       Mem_WR_Req <= INACTIVE; 
       S_BUSY_L_Int <= ACTIVE_L; 
           
     when Write_Done_S => 
       M_RESUME_L_Int <= ACTIVE_L; 
       Drive_Resume <= ACTIVE; 
       
--States for Errors        
     when Error_Internal => 
       null; 
             
     when Error_External => 
       Drive_Bus_Error <= ACTIVE; 
       BUS_ERROR_L_Int <= ACTIVE_L; 
         
     when others => 
       null; 
      
    end case; 
    
   end process outConProc;  
    
end MBUS_Controller_arch; 
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=============================================================== 
 XBUS Arbitrator <x_grant_logic.vhd> 
=============================================================== 
 
 Project:  AYK-14 VHSIC Processor Module Hardware Emulator 
 Component:  XBUS Arbitrator 
 Description: State Machine that determines the next user of the XBUS via a 

rotating priority scheme and generates the control signals to notify 
the current user. The signals monitored are the Desire signals from 
6 external users plus the Processor. The control signals generated 
are the Grant Signals.  

 
-- Author:  LT Bryan Fetter, USN 
-- Advisor:  Dr. Russ Duren 
-- Co-advisor:  Dr. Hersch Loomis 
-- Location:  Naval Postgraduate School 
 
-- Created:  25 October 2002 
-- Modified:  21 November 2002 
-- Simulated:   
-- Target:  XCV1000E FG1156 
-- Software:  Foundation 4.2i 
-- Notes: 
 
Disclaimer: NPS, makes no warranty for the use of this code or design. This code is 
provided  "As Is". NPS, assumes no responsibility for  any errors, which may appear in 
this code, nor does it make a commitment  to update the information contained herein. 
NPS specifically disclaims any implied warranties of fitness for a particular purpose. 
  Copyright (c) 2002 NPS 
   All rights reserved. 
=============================================================== 
 
 
library IEEE; 
use IEEE.std_logic_1164.all; 
use IEEE.numeric_std.all; 
use IEEE.std_logic_unsigned.all; 
use IEEE.std_logic_arith.all; 
 
package X_GRANT is 
 
component X_GRANT_LOGIC 
    port (         
        X_Desire: in std_logic_vector (6 downto 0); 
        X_Grant: out std_logic_vector (6 downto 0); 
        X_Resume: inout STD_LOGIC; 
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        Clk: in STD_LOGIC; 
        Rst: in STD_LOGIC 
    ); 
end component; 
 
end package X_GRANT; 
 
library IEEE; 
use IEEE.std_logic_1164.all; 
use IEEE.numeric_std.all; 
use IEEE.std_logic_unsigned.all; 
use IEEE.std_logic_arith.all; 
 
entity X_GRANT_LOGIC is 
    port ( 
        X_Desire: in std_logic_vector (6 downto 0); 
        X_Grant: out std_logic_vector (6 downto 0); 
        X_Resume: inout STD_LOGIC; 
        Clk: in STD_LOGIC; 
        Rst: in STD_LOGIC 
    ); 
end X_GRANT_LOGIC; 
 
architecture X_GRANT_LOGIC_arch of X_GRANT_LOGIC is 
 
type FSM_type is (Idle,Grant); 
signal Curr_State, Next_State : FSM_Type; 
signal Next_User : std_logic_vector (2 downto 0); 
signal Pri_0,Pri_1,Pri_2,Pri_3,Pri_4,Pri_5,Pri_6 : std_logic_vector (2 downto 0); 
 
signal X_Desire_Int : std_logic_vector (6 downto 0); 
signal X_Grant_Int : std_logic_vector (6 downto 0); 
signal X_Resume_Int: std_logic; 
 
 
begin 
 
X_Desire_Int <= X_Desire; 
X_Resume_Int <= X_Resume; 
X_Grant <= X_Grant_Int;   
   
   
nxtStProc: process(Curr_State,Next_State,  
     X_Desire_Int, X_Resume_Int,Next_User) 
     
  begin 
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      case Curr_State is 
       
        when Idle => 
          if X_Desire_Int /= "1111111" then 
            Next_State <= Grant; 
          else  
            Next_State <= Idle; 
          end if; 
       
        when Grant => 
           
   if (X_Resume_Int = '1'  
       and X_Desire_Int(conv_integer(Next_User)) = '1') then 
     Next_State <= Idle; 
   else 
     Next_State <= Grant; 
   end if;   
 
 when others =>  
   null; 
    
       end case; 
     end process nxtStProc; 
      
--Process to register current state 
 
  curStProc: process (Clk, Rst)  
  begin 
    if (Rst = '0') then 
       Curr_State <= Idle;       
    elsif (Clk'event and Clk ='1') then 
       Curr_State <= Next_State; 
    end if; 
  end process curStProc; 
   
--Process to generate outputs 
 
  outConProc: process(Curr_State,X_Desire_Int,Pri_0,Pri_1,Pri_2, 
          Pri_3,Pri_4,Pri_5,Pri_6,Next_User) 
       
  begin 
           
    case Curr_State is 
     
     when Idle => 
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       X_Grant_Int <= "0000000";  
        
       --The 1st If statement is to handle the reset case 
        
       if (Pri_0 = Pri_1) then 
         if (X_Desire_Int(conv_integer(0)) = '0' )then 
           Next_User <= "000"; 
         elsif (X_Desire_Int(conv_integer(1)) = '0' )then 
           Next_User <= "001"; 
         elsif (X_Desire_Int(conv_integer(2)) = '0' )then 
           Next_User <= "010"; 
         elsif (X_Desire_Int(conv_integer(3)) = '0' )then 
           Next_User <= "011"; 
         elsif (X_Desire_Int(conv_integer(4)) = '0' )then 
           Next_User <= "100"; 
         elsif (X_Desire_Int(conv_integer(5)) = '0' )then 
           Next_User <= "101"; 
         elsif (X_Desire_Int(conv_integer(6)) = '0' )then 
         end if; 
        
       elsif X_Desire_Int(conv_integer(Pri_0)) = '0'then 
         Next_User <= Pri_0; 
       elsif X_Desire_Int(conv_integer(Pri_1)) = '0'then 
         Next_User <= Pri_1; 
       elsif X_Desire_Int(conv_integer(Pri_2)) = '0'then 
         Next_User <= Pri_2; 
       elsif X_Desire_Int(conv_integer(Pri_3)) = '0'then 
         Next_User <= Pri_3; 
       elsif X_Desire_Int(conv_integer(Pri_4)) = '0'then 
         Next_User <= Pri_4; 
       elsif X_Desire_Int(conv_integer(Pri_5)) = '0'then 
         Next_User <= Pri_5; 
       elsif X_Desire_Int(conv_integer(Pri_6)) = '0'then 
         Next_User <= Pri_6; 
       end if; 
        
                     
     when Grant =>  
       X_Grant_Int(conv_integer(Next_User)) <= '1'; 
        
       if Next_User = "000" then 
         Pri_0 <= "001"; 
         Pri_1 <= "010"; 
         Pri_2 <= "011"; 
         Pri_3 <= "100"; 
         Pri_4 <= "101"; 
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         Pri_5 <= "110"; 
         Pri_6 <= "000"; 
       elsif Next_User = "001" then 
         Pri_0 <= "010"; 
         Pri_1 <= "011"; 
         Pri_2 <= "100"; 
         Pri_3 <= "101"; 
         Pri_4 <= "110"; 
         Pri_5 <= "000"; 
         Pri_6 <= "001"; 
       elsif Next_User = "010" then 
         Pri_0 <= "011"; 
         Pri_1 <= "100"; 
         Pri_2 <= "101"; 
         Pri_3 <= "110"; 
         Pri_4 <= "000"; 
         Pri_5 <= "001"; 
         Pri_6 <= "010"; 
       elsif Next_User = "011" then 
         Pri_0 <= "100"; 
         Pri_1 <= "101"; 
         Pri_2 <= "110"; 
         Pri_3 <= "000"; 
         Pri_4 <= "001"; 
         Pri_5 <= "010"; 
         Pri_6 <= "011"; 
       elsif Next_User = "100" then 
         Pri_0 <= "101"; 
         Pri_1 <= "110"; 
         Pri_2 <= "000"; 
         Pri_3 <= "001"; 
         Pri_4 <= "010"; 
         Pri_5 <= "011"; 
         Pri_6 <= "100"; 
       elsif Next_User = "101" then 
         Pri_0 <= "110"; 
         Pri_1 <= "000"; 
         Pri_2 <= "001"; 
         Pri_3 <= "010"; 
         Pri_4 <= "011"; 
         Pri_5 <= "100"; 
         Pri_6 <= "101"; 
       elsif Next_User = "110" then 
         Pri_0 <= "000"; 
         Pri_1 <= "001"; 
         Pri_2 <= "010"; 
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         Pri_3 <= "011"; 
         Pri_4 <= "100"; 
         Pri_5 <= "101"; 
         Pri_6 <= "110"; 
       else 
         Pri_0 <= "001"; 
         Pri_1 <= "010"; 
         Pri_2 <= "011"; 
         Pri_3 <= "100"; 
         Pri_4 <= "101"; 
         Pri_5 <= "110"; 
         Pri_6 <= "000"; 
       end if; 
                 
     when others => 
       null; 
      
    end case; 
    
   end process outConProc;   
 
end X_GRANT_LOGIC_arch; 
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=============================================================== 
 MBUS Desire / Grant Arbitrator <grant_logic.vhd> 
=============================================================== 
 
 Project:  AYK-14 VHSIC Processor Module Hardware Emulator 
 Component:  MBUS Grant Arbitrator 
 
 Description:  State machine that provides rotating priority logic to determinethe 
next user of the MBUS. The component analyzes the MBUS Request signals from the 3 
MBUS users and provides MBUS Grant signals to the appropriate user.The priority is a 
rotating type that ensures that each user has equal access to the bus based upon the 
previous user. 
 
 Author:  LT Bryan Fetter, USN 
 Advisor:  Dr. Russ Duren 
 Co-advisor:  Dr. Hersch Loomis 
 Location:  Naval Postgraduate School 
 
 Created:  25 October 2002 
 Modified:  7 November 2002 
 Simulated:   
 Target:  XCV1000E FG1156 
 Software:  Foundation 4.2i 
 Notes: 
 
 Disclaimer: NPS, makes no warranty for the use of this code or design. This code is 
provided  "As Is". NPS, assumes no responsibility for any errors, which may appear in 
this code, nor does it make a commitment  to update the information contained herein. 
NPS specifically disclaims any implied warranties of fitness for a particular purpose. 
  Copyright (c) 2002 NPS 
   All rights reserved. 
 
 
library IEEE; 
use IEEE.std_logic_1164.all; 
use IEEE.numeric_std.all; 
--use IEEE.std_logic_unsigned.all; 
--use IEEE.std_logic_arith.all; 
 
 
package Grant is 
 
component Grant_Logic 
    port ( 
        M_Desire_Ext: in UNSIGNED (1 downto 0); 
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        M_Desire_Proc: in STD_LOGIC; 
        M_Grant_Ext: out UNSIGNED (1 downto 0); 
 M_Grant_Proc: out STD_LOGIC; 
        Clk: in STD_LOGIC; 
        Rst: in STD_LOGIC 
    ); 
end component; 
 
end package Grant; 
 
library IEEE; 
use IEEE.std_logic_1164.all; 
use IEEE.numeric_std.all; 
--use IEEE.std_logic_unsigned.all; 
--use IEEE.std_logic_arith.all; 
 
entity Grant_Logic is 
    port ( 
        M_Desire_Ext: in UNSIGNED (1 downto 0); 
        M_Desire_Proc: in STD_LOGIC; 
        M_Grant_Ext: out UNSIGNED (1 downto 0); 
 M_Grant_Proc: out STD_LOGIC; 
        Clk: in STD_LOGIC; 
        Rst: in STD_LOGIC 
    ); 
end Grant_Logic; 
 
architecture Grant_Logic_arch of Grant_Logic is 
 
type FSM_type is (Idle,Grant); 
signal Curr_State, Next_State : FSM_Type; 
signal User : UNSIGNED (1 downto 0); 
signal Pri_0,Pri_1,Pri_2 : UNSIGNED (1 downto 0); 
 
signal M_Desire_Int : UNSIGNED (2 downto 0); 
signal M_Grant_Int : UNSIGNED (2 downto 0); 
 
 
begin 
 
M_Desire_Int(1) <= M_Desire_Ext(1); 
M_Desire_Int(0) <= M_Desire_Ext(0); 
M_Desire_Int(2) <= M_Desire_Proc; 
 
M_Grant_Ext(1) <= M_Grant_Int(1); 
M_Grant_Ext(0) <= M_Grant_Int(0); 
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M_Grant_Proc <= M_Grant_Int(2);   
   
   
nxtStProc: process(Curr_State,Next_State, M_Desire_Int, User) 
     
  begin 
            
      case Curr_State is 
         
         
        when Idle => 
           
          if M_Desire_Int /= "111" then 
            Next_State <= Grant; 
          else  
            Next_State <= Idle; 
          end if; 
       
        when Grant => 
          if (M_Desire_Int(to_integer(User)) = '0') then   
     Next_State <= Grant; 
   else 
     Next_State <= Idle; 
   end if;   
 
 when others =>  
   null; 
    
       end case; 
     end process nxtStProc; 
      
--Process to register current state 
 
  curStProc: process (Clk, Rst)  
  begin 
    if (Rst = '0') then 
       Curr_State <= Idle;       
    elsif (Clk'event and Clk ='1') then 
       Curr_State <= Next_State; 
    end if; 
  end process curStProc; 
   
--Process to generate outputs 
 
  outConProc: process(Curr_State,M_Desire_Int,Pri_0,Pri_1,Pri_2,User) 
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  begin 
           
    case Curr_State is 
     
    when Idle => 
       M_Grant_Int <= "000"; 
        
       --to handle Reset 
       if (Pri_0 = Pri_1) then 
         if ((M_Desire_Int(0)) = '0' )then 
           User <= "00"; 
         elsif ((M_Desire_Int(1)) = '0' )then 
           User <= "01"; 
         elsif ((M_Desire_Int(2)) = '0' )then 
           User <= "10"; 
         end if; 
       elsif (M_Desire_Int(to_integer(Pri_0)) = '0' )then 
         User <= Pri_0; 
       elsif (M_Desire_Int(to_integer(Pri_1)) = '0' )then 
         User <= Pri_1; 
       elsif (M_Desire_Int(to_integer(Pri_2)) = '0' )then 
         User <= Pri_2; 
       end if; 
        
                     
     when Grant =>  
       M_Grant_Int(to_integer(User)) <= '1'; 
        
       if User = "00" then 
         Pri_0 <= "01"; 
         Pri_1 <= "10"; 
         Pri_2 <= "00"; 
       elsif User = "01" then 
         Pri_0 <= "10"; 
         Pri_1 <= "00"; 
         Pri_2 <= "01"; 
       elsif User = "10" then 
         Pri_0 <= "00"; 
         Pri_1 <= "01"; 
         Pri_2 <= "10"; 
       else 
         Pri_0 <= "00"; 
         Pri_1 <= "01"; 
         Pri_2 <= "10"; 
       end if; 
                 

174 



     when others => 
       null; 
      
    end case; 
    
   end process outConProc;   
 
end Grant_Logic_arch; 
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=============================================================== 
 XBUS Controller <xbus_controller.vhd> 
=============================================================== 
 
 Project:  AYK-14 VHSIC Processor Module Hardware Emulator 
 Component:  XBUS Controller 
 Description: State Machine that determines the user of the XBUS via use of the 

X_GRANT_LOGIC program and generates the control signals for 
XBUS operation depending upon type of operation and user. For 
I/O module (DSM) memory requests, generates the 23-bit address 
from Page Register set 0 and generates  control signals for 
memory interface. 

 
 Author:  LT Bryan Fetter, USN 
 Advisor:  Dr. Russ Duren 
 Co-advisor:  Dr. Hersch Loomis 
 Location:  Naval Postgraduate School 
 
 Created:  25 October 2002 
 Modified:  21 November 2002 
 Simulated:   
 Target:  XCV1000E FG1156 
 Software:  Foundation 4.2i 
 Notes: 
 
 Disclaimer: NPS, makes no warranty for the use of this code or design. This code is 
provided  "As Is". NPS, assumes no responsibility for any errors, which may appear in 
this code, nor does it make a commitment  to update the information contained herein. 
NPS specifically disclaims any implied warranties of fitness for a particular purpose. 
  Copyright (c) 2002 NPS 
   All rights reserved. 
 
 
library IEEE; 
use IEEE.std_logic_1164.all; 
use IEEE.numeric_std.all; 
use WORK.X_GRANT.all; 
use WORK.common.all; 
 
package XBUS_CTRL is  
 
component XBUS_Controller  
    generic( 
  FREQ: natural := 40_000-- operating frequency in KHz 
    ); 
    port ( 
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        Clk: in std_logic; 
        Rst: in std_logic; 
        -- Signals from Processor 
        P_Command: in unsigned(23 downto 0); --Command Word for X_BUS 
        P_Data_In: in unsigned(15 downto 0); --Data Word for X_BUS 
        P_Data_Out: out unsigned(15 downto 0);--Data read by XBUS 
        --P_Page_0:      --Page Register set 0 
        P_Desire_L: in std_logic;    --Desire Signal 
        P_GRANT: out STD_LOGIC;    --Grant Signal 
         
        -- Signals from Memory Arbitrator 
        Mem_Addr: out unsigned(22 downto 0); 
        Mem_Data_WR: out unsigned(31 downto 0); 
        Mem_Data_RD: in unsigned(31 downto 0); 
        Mem_WR_Req: out std_logic; 
        Mem_RD_Req: out std_logic; 
        Mem_Done: in std_logic; 
        --Test Port 
        --Timer_Port: out unsigned(1 downto 0); 
        -- Signals on/off Adapter 
        X_BUS:  inout unsigned(23 downto 0); 
        X_GRANT_OUT: out std_logic_vector(5 downto 0); 
        X_DESIRE_IN_L:  in  std_logic_vector(5 downto 0); 
        X_REQUEST_L: inout std_logic; 
        X_ACKNOWLEDGE_L:inout std_logic; 
        X_RESUME_L: inout std_logic; 
        IPC_MODE_L: inout std_logic 
        
    ); 
end component; 
     
end XBUS_Ctrl; 
 
library IEEE; 
use IEEE.std_logic_1164.all; 
use IEEE.numeric_std.all; 
use WORK.X_GRANT.all; 
use WORK.Common.all; 
 
 
entity XBUS_Controller is 
    generic( 
  FREQ: natural := 40_000-- operating frequency in KHz 
    ); 
    port ( 
        Clk: in std_logic; 
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        Rst: in std_logic; 
        -- Signals from Processor 
        P_Command: in unsigned(23 downto 0); --Command Word for X_BUS 
        P_Data_In: in unsigned(15 downto 0); --Data Word for X_BUS 
        P_Data_Out: out unsigned(15 downto 0);--Data read by XBUS 
        --P_Page_0:      --Page Register set 0 
        P_Desire_L: in std_logic;    --Desire Signal 
        P_GRANT: out STD_LOGIC;    --Grant Signal 
         
        -- Signals from Memory Arbitrator 
        Mem_Addr: out unsigned(22 downto 0); 
        Mem_Data_WR: out unsigned(31 downto 0); 
        Mem_Data_RD: in unsigned(31 downto 0); 
        Mem_WR_Req: out std_logic; 
        Mem_RD_Req: out std_logic; 
        Mem_Done: in std_logic; 
        --Test Port 
        --Timer_Port: out unsigned(1 downto 0); 
        -- Signals on/off Adapter 
        X_BUS:  inout unsigned(23 downto 0); 
        X_GRANT_OUT: out std_logic_vector(5 downto 0); 
        X_DESIRE_IN_L:  in  std_logic_vector(5 downto 0); 
        X_REQUEST_L: inout std_logic; 
        X_ACKNOWLEDGE_L:inout std_logic; 
        X_RESUME_L: inout std_logic; 
        IPC_MODE_L: inout std_logic 
    ); 
end XBUS_Controller; 
 
architecture XBUS_Controller_arch of XBUS_Controller is 
 
--constants 
 
constant DELAY_TWO_ZERO: natural := 20;     -- 20 ns Delay interval  
constant DELAY_FIVE_ZERO: natural := 50;     -- 50 ns Delay interval 
-- ACK Signal Max Delay (20ns) 
constant TIMER_CYCLES_TWO_ZERO: natural := 1 + ((DELAY_TWO_ZERO * 
FREQ) / 1000000); 
-- Delay (50 ns)  
constant TIMER_CYCLES_FIVE_ZERO:natural := 1 + ((DELAY_FIVE_ZERO * 
FREQ) / 1000000);  
constant MSTR_ADDR: unsigned(3 downto 0) := "0000";  
--Address of VPM on XBUS 
--Constants for Clarity of Code 
constant ACTIVE: std_logic := '1'; 
constant ACTIVE_L: std_logic := '0'; --For active low signal 
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constant INACTIVE: std_logic := '0';  
constant INACTIVE_L: std_logic := '1'; --For active low signal 
 
signal Timer, Timer_next: unsigned(log2(TIMER_CYCLES_FIVE_ZERO+1)-1 downto 
0);  
-- current Delay time 
signal Time_Out: std_logic; 
signal User:  natural; 
 
--All signals tied to input/output have same name with _int addended 
 
signal  Clk_Int : std_logic;  
signal  Rst_Int : std_logic; 
 
signal X_GRANT_OUT_Int: std_logic_vector(6 downto 0); 
signal  X_DESIRE_IN_L_Int:  std_logic_vector(6 downto 0); 
signal X_BUS_Int:  unsigned(23 downto 0); 
signal X_REQUEST_L_Int: std_logic; 
signal X_ACKNOWLEDGE_L_Int:std_logic; 
signal X_RESUME_L_Int:  std_logic; 
signal IPC_MODE_L_Int:  std_logic; 
 
  
--Signal to drive INOUTS 
signal Drive_X_BUS:  std_logic; 
signal Drive_X_REQUEST:  std_logic; 
signal Drive_X_ACKNOWLEDGE: std_logic; 
signal Drive_X_RESUME:  std_logic; 
signal Drive_IPC_MODE:  std_logic; 
 
 
--Signals to Latch 
signal P_Command_Int:  unsigned(23 downto 0);  
--Command Word for X_BUS 
signal P_Data_In_Int:  unsigned(15 downto 0); --Data Word for X_BUS 
signal P_Data_Out_Int:  unsigned(15 downto 0); --Data Word for X_BUS 
signal Mem_Data_WR_Int:  unsigned(31 downto 0); 
signal Mem_Data_RD_Int:  unsigned(31 downto 0); 
signal Mem_Done_Int:  std_logic; 
signal Mem_Addr_Int:  unsigned(22 downto 0); 
  
--Latch Driver Signals 
signal P_Command_Latch:  std_logic; --Command Word for X_BUS 
signal P_Data_In_Latch:  std_logic; --Data Word for X_BUS 
signal P_Data_Out_Latch: std_logic; --Data Word for X_BUS 
signal Mem_Data_WR_Latch: std_logic; 
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signal Mem_Data_RD_Latch: std_logic; 
signal Mem_Done_Latch:  std_logic; 
signal Mem_Addr_Latch:  std_logic; 
 
 
 
type FSM_type is (Idle,Proc_Bdcst,Req_Proc_Write,Ack_Proc_Write,Rsm_Proc_Write, 

Req_Proc_Read,Ack_Proc_Read,Read_Wait,Rsm_Proc_Read, 
DSM_Bdcst, Req_DSM_Write, Addr_ClkIn_DSM_WR, Ack_DSM_Write,  
Data_ClkIn_DSM_WR,Req_DSM_Read,Addr_ClkIn_DSM_RD, 
Data_ClkOut_DSM_RD, Ack_DSM_Read); 

    --Proc_Bdcst Processor Broadcast Operation 
    --Req_Proc_Write Request Phase of Processor Write Operation 
    --Ack_Proc_Write Acknowledge Phase of Processor Write Operation 
    --Write_Wait  Wait for resume signal to indicate memory written 
    --Rsm_Proc_Write Resume Phase of Processor Write Operation 
    --Req_Proc_Read Request Phase of Processor Read Operation 
    --Ack_Proc_Read Acknowledge Phase of Processor Read Operation 
    --Rsm_Proc_Read Resume Phase of Processor Read Operation  
    --DSM_Bdcst DSM Broadcast Operation 
    --Req_DSM_Write Request Phase of DSM Write Operation 
    --Ack_DSM_Write Acknowledge Phase of DSM Write Operation 
    --Req_DSM_Read Request Phase of DSM Read Operation 
    --Ack_DSM_Read Acknowledge Phase of DSM Read Operation 
     
signal Curr_State, Next_State : FSM_Type; 
 
 
begin 
 
--Test Signal 
--Test Port 
--Timer_Port <= Timer; 
 
--Connect all appropriate signals 
Clk_Int <= Clk; 
Rst_Int <= Rst; 
 
X_DESIRE_IN_L_Int <= X_DESIRE_IN_L & P_Desire_L; 
X_GRANT_OUT <= X_GRANT_OUT_Int(5 downto 0); 
P_GRANT <= X_GRANT_OUT_Int(6); 
Mem_Addr <= Mem_Addr_Int; 
--X_RESUME_L_Int <= X_RESUME_L; 
P_Data_Out <= P_Data_Out_Int; 
Mem_Data_WR <= Mem_Data_WR_Int; 
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--Tristates for INOUTs 
 
X_BUS <= X_BUS_Int when Drive_X_BUS = ACTIVE else (others =>'Z'); 
X_REQUEST_L <= X_REQUEST_L_Int when Drive_X_REQUEST = ACTIVE else 
('Z'); 
X_ACKNOWLEDGE_L <= X_ACKNOWLEDGE_L_Int  when 
Drive_X_ACKNOWLEDGE = ACTIVE else ('Z'); 
X_RESUME_L <= X_RESUME_L_Int when Drive_X_RESUME = ACTIVE else ('Z'); 
IPC_MODE_L <= IPC_MODE_L_Int  when Drive_IPC_MODE = ACTIVE else 
('Z'); 
 
--Latch Signals 
P_Command_Int <= P_Command when P_Command_Latch = ACTIVE else 
P_Command_Int; 
P_Data_In_Int <= P_Data_In when P_Data_In_Latch = ACTIVE else P_Data_In_Int; 
P_Data_Out_Int <= X_BUS(15 downto 0) when P_Data_Out_Latch = ACTIVE else 
P_Data_Out_Int; 
Mem_Addr_Int <= X_BUS(22 downto 0) when Mem_Addr_Latch = ACTIVE else 
Mem_Addr_Int; 
Mem_Data_WR_Int <= ("0000000000000000" & X_BUS(15 downto 0))  
 when Mem_Data_WR_Latch = ACTIVE else Mem_Data_WR_Int; 
Mem_Data_RD_Int <= (Mem_Data_RD) when Mem_Data_RD_Latch = ACTIVE else 
Mem_Data_RD_Int; 
Mem_Done_Int <= Mem_Done when Mem_Done_Latch = ACTIVE else 
Mem_Done_Int; 
 
  
--Instantiate Grant Logic Module 
  u0: X_GRANT_LOGIC port map (           
           X_Desire => X_DESIRE_IN_L_Int, 
           X_Grant => X_GRANT_OUT_Int, 
           X_Resume =>X_RESUME_L_Int,  
           Clk => Clk_Int, 
           Rst => Rst_Int 
           ); 
 
     
--Next State Conditioning Logic (Process 1) 
             
nxtStProc: 
process(Curr_State,Mem_Done,Timer,User,X_DESIRE_IN_L,X_RESUME_L, 

X_ACKNOWLEDGE_L,X_REQUEST_L,P_Command,  
X_BUS,X_GRANT_OUT_Int, Mem_Done_Int) 

     
  begin 
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      case Curr_State is 
         
        when Idle => 
          if (X_GRANT_OUT_Int(6) = ACTIVE) then  --Processor Operations 
             if (P_Command(19) = ACTIVE) then 
               next_state <= Proc_Bdcst; 
             elsif (P_Command(17) = ACTIVE) then 
               next_state <= Req_Proc_Write; 
             else  
               next_state <= Req_Proc_Read; 
             end if; 
          elsif (X_GRANT_OUT_Int(5 downto 0) /= "000000") then  --DSM Operations 
             if (X_REQUEST_L = ACTIVE_L) then 
                if (X_BUS(19) = ACTIVE) then 
                  next_state <= DSM_Bdcst; 
                elsif (X_BUS(19) = INACTIVE  
                 and X_BUS(23 downto 20) = MSTR_ADDR) then 
                  if (X_BUS(17) = INACTIVE) then 
                    next_state <= REQ_DSM_Read; 
                  elsif (X_BUS(17) = ACTIVE) then 
                    next_state <= REQ_DSM_Write; 
                  end if; 
                end if; 
             end if; 
          else 
            next_state <= Idle; 
          end if; 
          --Determine User 
          if X_GRANT_OUT_Int(0) = ACTIVE then 
            User <= 0; 
          elsif X_GRANT_OUT_Int(1) = ACTIVE then 
            User <= 1; 
          elsif X_GRANT_OUT_Int(2) = ACTIVE then 
            User <= 2; 
          elsif X_GRANT_OUT_Int(3) = ACTIVE then 
            User <= 3; 
          elsif X_GRANT_OUT_Int(4) = ACTIVE then 
            User <= 4; 
          elsif X_GRANT_OUT_Int(5) = ACTIVE then 
            User <= 5; 
          else 
            User <= 0; 
          end if;       
        --Broadcast Command by Processor 
        when Proc_Bdcst => 
           if X_GRANT_OUT_Int(6) = INACTIVE then 
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             next_state <= Idle; 
           else 
             next_state <= Proc_Bdcst; 
           end if; 
        --Processor Write Operations 
        when Req_Proc_Write => 
           if X_ACKNOWLEDGE_L = INACTIVE_L then 
             next_state <= Ack_Proc_Write; 
           else 
             next_state <= Req_Proc_Write; 
           end if; 
                    
        when Ack_Proc_Write => 
           if X_RESUME_L = ACTIVE_L then 
             next_state <= Rsm_Proc_Write; 
           else  
             next_state <= Ack_Proc_Write; 
           end if; 
                    
        when Rsm_Proc_Write => 
           if X_RESUME_L = INACTIVE_L then 
             next_state <= Idle; 
           else  
             next_state <= Rsm_Proc_Write; 
           end if; 
 --Processor Read Operation 
     
 when Req_Proc_Read => 
    if X_ACKNOWLEDGE_L = ACTIVE_L then 
             next_state <= Ack_Proc_Read; 
           else 
             next_state <= Req_Proc_Read; 
           end if; 
  
 when Ack_Proc_Read => 
    if X_RESUME_L = ACTIVE_L then 
             next_state <= Read_Wait; 
           else  
             next_state <= Ack_Proc_Read; 
           end if; 
         
        when Read_Wait => 
           next_state <= Rsm_Proc_Read; 
            
 when Rsm_Proc_Read=> 
    if X_RESUME_L = INACTIVE_L then 
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             next_state <= Idle; 
           else  
             next_state <= Rsm_Proc_Read; 
           end if; 
             
 when DSM_Bdcst => 
    if (X_DESIRE_IN_L(User) = INACTIVE_L) then 
             next_state <= Idle; 
           else 
             next_state <= DSM_Bdcst; 
           end if; 
 --DSM Write to Memory 
 when Req_DSM_Write => 
    next_state <= Addr_ClkIn_DSM_WR; 
     
 when Addr_ClkIn_DSM_WR => 
    if Timer = 0 then 
       next_state <= Ack_DSM_Write; 
    else  
       next_state <= Addr_ClkIn_DSM_WR; 
    end if; 
      
 when Ack_DSM_Write => 
    next_state <= Data_ClkIn_DSM_WR; 
     
 when Data_ClkIn_DSM_WR => 
    if (Mem_Done_Int = ACTIVE  
        and X_DESIRE_IN_L(User) = INACTIVE_L) then 
       next_state <= Idle; 
    else 
       next_state <= Data_ClkIn_DSM_WR; 
    end if;   
 --DSM Read from Memory       
 when Req_DSM_Read => 
    next_state <= Addr_ClkIn_DSM_RD; 
  
 when Addr_ClkIn_DSM_RD => 
    if Mem_Done = ACTIVE then 
       next_state <= Data_ClkOut_DSM_RD; 
    else 
       next_state <= Addr_ClkIn_DSM_RD; 
    end if; 
  
 when Data_ClkOut_DSM_RD => 
    next_state <= Ack_DSM_Read; 
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 when Ack_DSM_Read => 
    if Timer = 0 then 
       next_state <= Idle; 
    else  
       next_state <= Ack_DSM_Read; 
    end if; 
     
 when others =>  
   null; 
    
       end case; 
 
--Timer Logic 
     case Curr_State is 
      
       when Idle => 
         null; 
          
       when others => 
        
         if Timer /= TO_UNSIGNED(0,Timer'length) then  
           Timer_next <= Timer - 1; 
           Time_Out <= INACTIVE; 
         else 
           --Timer_next <= Timer; 
           Time_Out <= ACTIVE; 
         end if; 
      end case; 
        
   end process nxtStProc; 
      
--Current State Vector Register (Process 2) 
 
  curStProc: process (Clk_Int, Rst_Int)  
  begin 
    if (Rst_Int = '0') then 
       Curr_State <= Idle; 
       Timer <=  TO_UNSIGNED(0,Timer'length); 
    elsif (Clk_Int'event and Clk_Int ='1') then 
           Curr_State <= Next_State; 
           Timer <= Timer_next;   
    end if; 
  end process curStProc; 
   
 
--Output Conditioning Logic (Process 3) 
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  outConProc: process(Curr_State,P_Command_Int,P_Data_In_Int,  
     Mem_Data_RD_Int) 
       
  begin 
     
    --Default Signal to drive all Tristates High Z 
        
 Drive_X_BUS <= INACTIVE; 
 X_REQUEST_L_Int <= INACTIVE_L; 
 Drive_X_REQUEST <= INACTIVE; 
 X_ACKNOWLEDGE_L_Int <= INACTIVE_L; 
 Drive_X_ACKNOWLEDGE <= INACTIVE; 
 X_RESUME_L_Int <= INACTIVE_L; 
 Drive_X_RESUME <= INACTIVE; 
 IPC_MODE_L_Int <= INACTIVE_L; 
 Drive_IPC_MODE <= INACTIVE; 
  
    --Drive all outs inactive 
        Mem_WR_Req <= INACTIVE; 
        Mem_RD_Req <= INACTIVE; 
                 
    --Latch Drivers 
 P_Command_Latch <= INACTIVE; --Command Word for X_BUS 
 P_Data_In_Latch <= INACTIVE; --Data Word for X_BUS 
 P_Data_Out_Latch <= INACTIVE; 
 Mem_Data_WR_Latch<= INACTIVE; 
 Mem_Data_RD_Latch<= INACTIVE; 
 Mem_Done_Latch <= INACTIVE; 
 Mem_Addr_Latch <= INACTIVE; 
           
    case Curr_State is 
      
     when Idle => 
        P_Command_Latch <= ACTIVE;  
        --This latches the signal when leaving Idle 
        P_Data_In_Latch <= ACTIVE; 
                 
     when Proc_Bdcst => 
        P_Command_Latch <= ACTIVE; 
        Drive_X_BUS <= ACTIVE; 
        X_BUS_Int <= P_Command_Int; 
        X_REQUEST_L_Int <= ACTIVE_L; 
 Drive_X_REQUEST <= ACTIVE; 
  
     when Req_Proc_Write => 
      Drive_X_BUS <= ACTIVE; 
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        X_BUS_Int <= P_Command_Int; 
        X_REQUEST_L_Int <= ACTIVE_L; 
 Drive_X_REQUEST <= ACTIVE; 
       
     when Ack_Proc_Write => 
      Drive_X_BUS <= ACTIVE; 
        X_BUS_Int(15 downto 0) <= P_Data_In_Int; 
        Drive_X_REQUEST <= ACTIVE; 
              
     when Rsm_Proc_Write => 
        Drive_X_REQUEST <= ACTIVE; 
      
--Processor Read Operation 
 
     when Req_Proc_Read => 
      Drive_X_BUS <= ACTIVE; 
        X_BUS_Int <= P_Command_Int; 
        X_REQUEST_L_Int <= ACTIVE_L; 
 Drive_X_REQUEST <= ACTIVE; 
  
     when Ack_Proc_Read => 
        Drive_X_REQUEST <= ACTIVE; 
         
     when Read_Wait => 
 P_Data_Out_Latch <= ACTIVE; 
 Drive_X_REQUEST <= ACTIVE; 
   
     when Rsm_Proc_Read=> 
      Drive_X_REQUEST <= ACTIVE; 
 
--DSM Operations 
     when DSM_Bdcst => 
 --No response Required 
  
--DSM Write Operation  
     when Req_DSM_Write => 
 Mem_Addr_Latch <= ACTIVE; 
        Drive_X_RESUME <= ACTIVE; 
        Drive_X_ACKNOWLEDGE <= ACTIVE; 
             
     when Addr_ClkIn_DSM_WR => 
 X_ACKNOWLEDGE_L_Int <= ACTIVE_L; 
 Drive_X_ACKNOWLEDGE <= ACTIVE; 
 Drive_X_RESUME <= ACTIVE; 
  
     when Ack_DSM_Write => 
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        Mem_Data_WR_Latch <= ACTIVE; 
        Drive_X_RESUME <= ACTIVE; 
        Drive_X_ACKNOWLEDGE <= ACTIVE; 
             
     when Data_ClkIn_DSM_WR => 
        X_RESUME_L_Int <= ACTIVE_L; 
 Drive_X_RESUME <= ACTIVE; 
 Drive_X_ACKNOWLEDGE <= ACTIVE; 
        Mem_WR_Req <= ACTIVE; 
         
--DSM Read Operation  
     when Req_DSM_Read => 
      Mem_Addr_Latch <= ACTIVE; 
      Drive_X_RESUME <= ACTIVE; 
        Drive_X_ACKNOWLEDGE <= ACTIVE; 
      
     when Addr_ClkIn_DSM_RD => 
      X_ACKNOWLEDGE_L_Int <= ACTIVE_L; 
      Drive_X_ACKNOWLEDGE <= ACTIVE; 
      Drive_X_RESUME <= ACTIVE; 
      Mem_RD_Req <= ACTIVE; 
      Mem_Data_RD_Latch <= ACTIVE; 
     
     when Data_ClkOut_DSM_RD => 
      Drive_X_BUS <= ACTIVE; 
        X_BUS_Int(15 downto 0) <= Mem_Data_RD_Int(15 downto 0); 
      Drive_X_RESUME <= ACTIVE; 
        Drive_X_ACKNOWLEDGE <= ACTIVE; 
      
     when Ack_DSM_Read => 
        Drive_X_BUS <= ACTIVE; 
        X_BUS_Int(15 downto 0) <= Mem_Data_RD_Int(15 downto 0); 
        X_RESUME_L_Int <= ACTIVE_L; 
      Drive_X_RESUME <= ACTIVE; 
      X_ACKNOWLEDGE_L_Int <= INACTIVE_L; 
        Drive_X_ACKNOWLEDGE <= ACTIVE; 
    
     when others => 
       null; 
      
    end case; 
     
  end process outConProc;  
    
    
end XBUS_Controller_arch; 
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=============================================================== 
 Adapter Module <adapter_top.vhd> 
=============================================================== 
 
 Project:  AYK-14 VHSIC Processor Module Hardware Emulator 
 Component:  Adapter (Top level module) 
 Description: Adapter module combines all of the components in the project, 

including the processor (data_path.vhd), and connects all 
appropriate signals. The ports correspond to the ports on the VPM 
and the SDRAM available on the AVNET board. 

 
 Author:  LT Bryan Fetter, USN 
 Advisor:  Dr. Russ Duren 
 Co-advisor:  Dr. Hersch Loomis 
 Location:  Naval Postgraduate School 
 
 Created:  25 October 2002 
 Modified:  1 December2002 
 Simulated:   
 Target:  XCV1000E FG1156 
 Software:  Foundation 4.2i 
 
 Disclaimer: NPS, makes no warranty for the use of this code or design. This code is 
provided  "As Is". NPS, assumes no responsibility for any errors, which may appear in 
this code, nor does it make a commitment  to update the information contained herein. 
NPS specifically disclaims any implied warranties of fitness for a particular purpose. 
  Copyright (c) 2002 NPS 
   All rights reserved. 
 
 
library IEEE; 
use IEEE.std_logic_1164.all; 
use IEEE.numeric_std.all; 
use IEEE.std_logic_unsigned.all; 
use WORK.common.all; 
use WORK.Event_Bus.all; 
use WORK.Add_Sel.all; 
use WORK.Mem_Arb.all; 
use WORK.Grant.all; 
use WORK.oddParity.all; 
use WORK.MBUS_CTRL.all; 
use WORK.X_Grant.all; 
use WORK.XBUS_CTRL.all; 
use WORK.sdram.all; 
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entity Adapter_Top is 
    generic( 
  SD_FREQ: natural := 40_000;-- operating frequency in KHz 
  SD_DATA_WIDTH: natural := 16;-- host & SDRAM data width 
  SD_SADDR_WIDTH: natural := 12;-- SDRAM-side address width 
  SD_HADDR_WIDTH: natural := 23; 
  DATA_WIDTH_Arb: natural := 32; 
  ADDR_WIDTH_Arb: natural := 23; 
  XFREQ: natural := 40_000 
 ); 
    port ( 
     CLK: in std_logic; 
     RST: in std_logic; 
    --MBUS Signals     
        M_BUS: inout unsigned(22 downto 0); 
        --Handshaking Signals 
        M_REQUEST_L: inout STD_LOGIC; 
        M_ACKNOWLEDGE_L: inout STD_LOGIC; 
        M_RESUME_L: inout STD_LOGIC; 
        --Arbitration / Control Signals 
        --M_DESIRE_OUT_L: out STD_LOGIC; 
        M_DESIRE_IN_L: in unsigned(1 downto 0); 
        M_GRANT_OUT: out unsigned(1 downto 0); 
        --M_GRANT_IN: in STD_LOGIC; --Used when VPM is slave 
        M_BUSY_L: inout STD_LOGIC; 
        S_BUSY_L: out STD_LOGIC; 
        --MBus parity bits 
        LSB_PARITY: inout STD_LOGIC; 
        MSB_PARITY: inout STD_LOGIC; 
        ADRS_PARITY: inout STD_LOGIC; 
        CMD_PARITY: inout STD_LOGIC; 
        --Control Bits         
        MSB_WRITE_L: inout STD_LOGIC; 
        LSB_WRITE_L: inout STD_LOGIC; 
        BUS_ERROR_L: inout STD_LOGIC; 
        THREE_TWO_DATA: inout STD_LOGIC; 
        IPL_WRITE: inout STD_LOGIC; 
              
      --XBUS Signals 
        X_BUS: inout unsigned(23 downto 0); 
        --Handshaking Signals 
        X_REQUEST_L: inout STD_LOGIC; 
        X_ACKNOWLEDGE_L: inout STD_LOGIC; 
        X_RESUME_L: inout STD_LOGIC; 
        --X_DESIRE_OUT_L: out STD_LOGIC; 
        --Arbitration Signals 
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        X_GRANT_OUT: out std_logic_vector(5 downto 0); 
        X_DESIRE_IN: in std_logic_vector(5 downto 0); 
        --X_GRANT_IN: in STD_LOGIC; 
        --O_X_GRANT_IN: in STD_LOGIC; 
        --IPC Control 
        IPC_MODE: inout STD_LOGIC; 
       
      --Event System Signals   
        E_BUS: in STD_LOGIC_VECTOR (7 downto 0); 
        --Event Control Signals (EMON Bus) 
        EMON: out STD_LOGIC_VECTOR (7 downto 0); 
         
      --SDRAM Signals 
       sclkfb:  in std_logic;     
 sclk:  out std_logic;     
 sclk_tst: out std_logic; 
 cke:  out std_logic;     
 cs_n:  out std_logic;     
 ras_n:  out std_logic;     
 cas_n:  out std_logic;     
 we_n:  out std_logic;     
 ba:  out unsigned(1 downto 0);  
 sAddr:  out unsigned(SD_SADDR_WIDTH-1 downto 0);  
 sData:  inout unsigned(SD_DATA_WIDTH-1 downto 0);   
 dqmh:  out std_logic;     
 dqml:  out std_logic     
  
    ); 
end Adapter_Top; 
 
architecture Adapter_Top_arch of Adapter_Top is 
 
signal Clk_Int: std_logic; 
signal Rst_Int: std_logic; 
--Signals for Event Controller 
signal E_VCTR_Int: std_logic_vector(8 downto 0); 
signal SR1_Bit_Int: std_logic; 
--Signals for Add_Select 
signal Add_In_Proc_Int:  unsigned (22 downto 0); 
signal Data_WR_Proc_Int: unsigned (31 downto 0); 
signal Data_RD_Proc_Int: unsigned (31 downto 0); 
signal RD_Req_in_Proc_Int: STD_LOGIC; 
signal WR_Req_in_Proc_Int: STD_LOGIC; 
signal Mem_req_Done_Proc_Int: std_logic; 
        --MBUS Side 
signal Data_RD_MBUS_Int: unsigned (31 downto 0); 
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signal Data_WR_MBUS_Int:  unsigned (31 downto 0); 
signal Add_out_MBUS_Int:  unsigned (22 downto 0); 
signal RD_Req_out_MBUS_Int: STD_LOGIC; 
signal WR_Req_out_MBUS_Int: STD_LOGIC; 
signal Proc_Desire_L_MBUS_Int: STD_LOGIC; 
signal Mem_req_Done_MBUS_Int:  STD_LOGIC; 
        --OBM Side 
signal Add_In_OBM_Int: unsigned (22 downto 0); 
signal Data_RD_OBM_Int:  unsigned (31 downto 0); 
signal Data_WR_OBM_Int:  unsigned (31 downto 0); 
signal RD_Req_OBM_Int:  STD_LOGIC; 
signal WR_Req_OBM_Int:  STD_LOGIC; 
signal Mem_req_Done_OBM_Int: STD_LOGIC; 
--Data Path 
signal  IR_BUS_int_Int: std_logic_vector (31 downto 0); 
signal abs_addr_1_Int: std_logic_vector (22 downto 0); 
signal lcen_Int: std_logic; 
signal rcen_Int: std_logic; 
signal mem_READ_req_l_Int: std_logic; 
signal mem_WRITE_req_l_Int: std_logic; 
--MBUS 
signal P_Grant_Out_Int: std_logic; 
signal M_Mem_Addr_Int: unsigned(22 downto 0); 
signal M_Mem_Data_WR_Int: unsigned(31 downto 0); 
signal M_Mem_Data_RD_Int: unsigned(31 downto 0); 
signal M_Mem_WR_Req_Int: std_logic; 
signal M_Mem_RD_Req_Int: std_logic; 
signal M_Mem_Done_Int: std_logic; 
--XBUS 
signal P_Command_Int:  unsigned(23 downto 0); 
signal P_Data_In_Int: unsigned(15 downto 0);  
signal P_Data_Out_Int: unsigned(15 downto 0); 
signal P_Desire_L_Int: std_logic; 
signal P_GRANT_Int: std_logic; 
signal X_Mem_Addr_Int: unsigned(22 downto 0); 
signal X_Mem_Data_WR_Int: unsigned(31 downto 0); 
signal X_Mem_Data_RD_Int: unsigned(31 downto 0); 
signal X_Mem_WR_Req_Int: std_logic; 
signal X_Mem_RD_Req_Int: std_logic; 
signal X_Mem_Done_Int: std_logic; 
--SDRAM Ctrl 
signal SD_bufclk_Int: std_logic;     
signal SD_clk2x_Int:std_logic;     
signal SD_lock_Int: std_logic;     
signal SD_rd_Int: std_logic;     
signal SD_wr_Int: std_logic;     
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signal SD_done_Int: std_logic;     
signal SD_hAddr_Int: unsigned(SD_HADDR_WIDTH-1 downto 0);  
signal SD_hDIn_Int: unsigned(SD_DATA_WIDTH-1 downto 0);  
signal SD_hDOut_Int: unsigned(SD_DATA_WIDTH-1 downto 0);  
signal SD_sdramCntl_state_Int: std_logic_vector(3 downto 0); 
 
 
    
 
begin 
   
--Clk_Int <= CLK; 
Rst_Int <= RST;   
 
 EBUS1: EVT_FSM port map( 
  EBUS => E_BUS, 
         CLK => Clk_Int, 
         RST => Rst_Int, 
         SR1_BIT => SR1_Bit_Int, --Needs to be updated  
         EMON => EMON,  
         E_VCTR => E_VCTR_Int 
         );    
 
 ADD_SEL1: Add_Select port map( 
  Add_In_Proc => Add_In_Proc_Int, 
         Data_WR_Proc => Data_WR_Proc_Int, 
         Data_RD_Proc => Data_RD_Proc_Int, 
         RD_Req_in_Proc => RD_Req_in_Proc_Int, 
         WR_Req_in_Proc => WR_Req_in_Proc_Int, 
         Mem_req_Done_Proc => Mem_req_Done_Proc_Int, 
        --MBUS Side 
         Data_RD_MBUS => Data_RD_MBUS_Int, 
         Data_WR_MBUS => Data_WR_MBUS_Int, 
         Add_out_MBUS => Add_out_MBUS_Int, 
         RD_Req_out_MBUS => RD_Req_out_MBUS_Int, 
         WR_Req_out_MBUS => WR_Req_out_MBUS_Int, 
         Proc_Desire_L_MBUS => Proc_Desire_L_MBUS_Int, 
         Mem_req_Done_MBUS => Mem_req_Done_MBUS_Int, 
        --OBM Side 
         Add_In_OBM => Add_In_OBM_Int, 
         Data_RD_OBM => Data_RD_OBM_Int, 
         Data_WR_OBM => Data_WR_OBM_Int, 
         RD_Req_OBM => RD_Req_OBM_Int, 
         WR_Req_OBM => WR_Req_OBM_Int, 
         Mem_req_Done_OBM => Mem_req_Done_OBM_Int 
         ); 
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 Mem_Arb1: mem_arbitrator generic map( 
  DATA_WIDTH => DATA_WIDTH_Arb, 
  ADDR_WiDTH => ADDR_WIDTH_Arb) 
  port map( 
  Clk => Clk_Int, 
  RST => Rst_Int, 
  --Signals from SDRAM Controller 
  Mem_Done => SD_done_Int, 
  RD => SD_rd_Int, 
  WR => SD_wr_Int, 
  hAddr => SD_hAddr_Int, 
  hData_In => SD_hDIn_Int, 
  hData_Out  =>SD_hDOut_Int, 
  --Signals from Processor 
  P_Addr_In => Add_In_OBM_Int, 
  P_Data_In => Data_RD_OBM_Int, 
  P_Data_Out => Data_WR_OBM_Int, 
  P_Mem_Done => Mem_req_Done_OBM_Int, 
  P_RD => RD_Req_OBM_Int, 
  P_WR => WR_Req_OBM_Int, 
  --Signals from MBus 
  M_Addr_In => M_Mem_Addr_Int, 
  M_Data_In => M_Mem_Data_RD_Int, 
  M_Data_Out => M_Mem_Data_WR_Int, 
  M_Mem_Done => M_Mem_Done_Int, 
  M_RD => M_Mem_RD_Req_Int, 
  M_WR => M_Mem_WR_Req_Int, 
     
  --Signals from XBus 
  X_Addr_In => X_Mem_Addr_Int, 
  X_Data_In => X_Mem_Data_WR_Int, 
  X_Data_Out => X_Mem_Data_RD_Int, 
  X_Mem_Done => X_Mem_Done_Int, 
  X_RD => X_Mem_RD_Req_Int, 
  X_WR => X_Mem_WR_Req_Int 
  ); 
   
 Processor:data_path port map( 
  reset => Rst_Int,  
  clock => Clk_Int, 
  mem_req_DONE => Mem_req_Done_Proc_Int, 
  mem_READ_req => RD_Req_in_Proc_Int, 
  mem_WRITE_req => WR_Req_in_Proc_Int, 
  IR_BUS => IR_BUS_Int, 
  mem_BUS => Data_RD_Proc_Int, 
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  abs_addr => Add_In_Proc_Int, 
  abs_addr_1 => abs_addr_1_Int, 
  lcen => lcen_Int, 
  rcen => lcen_Int, 
  mem_READ_req_l => mem_READ_req_l_Int, 
  mem_WRITE_req_l => mem_WRITE_req_l 
  ); 
   
 MBUS: mbus_controller port map( 
  Clk => Clk_Int, 
         Rst => Rst_Int, 
        -- Signals from Processor 
         P_Data_WR => Data_WR_MBUS_Int, 
         P_Data_RD => Data_RD_MBUS_Int, 
         P_Addr => Add_out_MBUS_Int, 
         P_RD_Req => RD_Req_out_MBUS_Int, 
         P_WR_Req => WR_Req_out_MBUS_Int, 
         P_Desire_L => Proc_Desire_L_MBUS_Int, 
         P_Mem_Done =>Mem_req_Done_MBUS_Int, 
         P_Grant_Out => P_Grant_Out_Int, --Grant signal to Processor 
          
         -- Signals from Memory Arbitrator 
         Mem_Addr => M_Mem_Addr_Int, 
         Mem_Data_WR => M_Mem_Data_WR_Int, 
         Mem_Data_RD => M_Mem_Data_RD_Int, 
         Mem_WR_Req => M_Mem_WR_Req_Int, 
         Mem_RD_Req => M_Mem_RD_Req_Int, 
         Mem_Done => M_Mem_Done_Int, 
                 
         -- Signals on/off Adapter 
         M_BUS => M_BUS, 
         --M_GRANT_IN_L =>  ; Used only when used as Slave 
         M_DESIRE_IN_L => M_DESIRE_IN_L, 
         M_GRANT_OUT => M_GRANT_OUT, 
         --M_DESIRE_OUT_L ;--Used only when VPM used as Slave 
         M_REQUEST_L => M_REQUEST_L, 
         M_ACKNOWLEDGE_L => M_ACKNOWLEDGE_L, 
         M_RESUME_L => M_RESUME_L, 
         S_BUSY_L =>S_BUSY_L, 
         M_BUSY_L =>M_BUSY_L, 
         BUS_ERROR_L => BUS_ERROR_L, 
          --Parity Bits 
         LSB_PARITY => LSB_PARITY , 
         MSB_PARITY => MSB_PARITY , 
         ADRS_PARITY => ADRS_PARITY, 
         CMD_PARITY => CMD_PARITY , 
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          --Control Bits 
         MSB_WRITE_L => MSB_WRITE_L , 
         LSB_WRITE_L => LSB_WRITE_L, 
         THREE_TWO_DATA => THREE_TWO_DATA, 
         IPL_WRITE => IPL_WRITE 
         ); 
   
 XBUS: xbus_controller  
  generic map(FREQ => XFREQ) 
  port map ( 
         Clk => Clk_Int, 
         Rst => Rst_Int, 
         -- Signals from Processor 
         P_Command => P_Command_Int, 
         P_Data_In => P_Data_In_Int, 
         P_Data_Out => P_Data_Out_Int, 
         --P_Page_0:      --Page Register set 0 
         P_Desire_L => P_Desire_L_Int, 
         P_GRANT => P_GRANT_Int, 
         
         -- Signals from Memory Arbitrator 
         Mem_Addr => X_Mem_Addr_Int, 
         Mem_Data_WR => X_Mem_Data_WR_Int, 
         Mem_Data_RD => X_Mem_Data_RD_Int, 
         Mem_WR_Req => X_Mem_WR_Req_Int, 
         Mem_RD_Req => X_Mem_RD_Req_Int, 
         Mem_Done => X_Mem_Done_Int, 
    
         -- Signals on/off Adapter 
         X_BUS => X_BUS, 
         X_GRANT_OUT => X_GRANT_OUT, 
         X_DESIRE_IN_L => X_DESIRE_IN, 
         X_REQUEST_L => X_REQUEST_L, 
         X_ACKNOWLEDGE_L => X_ACKNOWLEDGE_L, 
         X_RESUME_L => X_RESUME_L, 
         IPC_MODE_L => IPC_MODE 
        
    ); 
   
 
 SDRAM: sdramCntl  
  generic map( 
  FREQ => SD_FREQ, 
  HADDR_WIDTH => SD_HADDR_WIDTH, 
  SADDR_WIDTH => SD_SADDR_WIDTH 
  ) 
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  port map ( 
  clkin => CLK, 
  bufclk => SD_bufclk_Int, 
  clk0 => Clk_Int, 
  clk2x => SD_clk2x_Int,     
   lock =>  SD_lock_Int, 
   rst => Rst_Int,     
   rd => SD_rd_Int,     
   wr => SD_wr_Int,     
   done => SD_done_Int,    
   hAddr =>SD_hAddr_Int, 
   hDIn => SD_hDIn_Int,  
   hDout =>SD_hDOut_Int,  
   sdramCntl_state => SD_sdramCntl_state_Int, 
  -- SDRAM side 
  sclkfb => sclkfb, 
  sclk => sclk, 
  sclk_tst => sclk_tst, 
  cke => cke, 
  cs_n => cs_n, 
  ras_n => ras_n, 
  cas_n => cas_n, 
  we_n => we_n, 
  ba => ba, 
  sAddr => sAddr, 
  sData => sData, 
  dqmh => dqmh, 
  dqml => dqml 
 ); 
  
      
   
end Adapter_Top_arch; 
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